Что такое коэффициент полезного действия передачи

Автор Даниил Леонидович На чтение 7 мин. Просмотров 16.4k. Опубликовано 18 ноября

Что такое КПД

Коэффициент полезного действия машины или механизма – это важная величина, характеризующая энергоэффективность данного устройства. Понятие используется и в повседневной жизни. Например, когда человек говорит, что КПД его усилий низкий, это значит, что сил затрачено много, а результата почти нет. Величина измеряет отношение полезной работы ко всей совершенной работе.

Согласно формуле, чтобы найти величину, нужно полезную работу разделить на всю совершенную работу. Или полезную энергию разделить на всю израсходованную энергию. Этот коэффициент всегда меньше единицы. Работа и энергия измеряется в Джоулях. Поделив Джоули на Джоули, получаем безразмерную величину. КПД иногда называют энергоэффективностью устройства.

формула КПД

Если попытаться объяснить простым языком, то представим, что мы кипятим чайник на плите. При сгорании газа образуется определенное количество теплоты. Часть этой теплоты нагревает саму горелку, плиту и окружающее пространство. Остальная часть идет на нагревание чайника и воды в нем. Чтобы рассчитать энергоэффективность данной плитки, нужно будет разделить количество тепла, требуемое для нагрева воды до температуры кипения на количество тепла, выделившееся при горении газа.

Данная величина всегда ниже единицы. Например, для любой атомной электростанции она не превышает 35%. Причиной является то, что электростанция представляет собой паровую машину, где нагретый за счет ядерной реакции пар вращает турбину. Большая часть энергии идет на нагрев окружающего пространства. Тот факт, что η не может быть равен 100%, следует из второго начала термодинамики.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу. Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

формула

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Единицы измерения

Коэффициент полезного действия – величина безразмерная, то есть не нужно ставить какую-либо единицу измерения. Но эту величину можно выразить и в процентах. Для этого полученное в результате деления по формуле число необходимо умножить на 100%. В школьном курсе математики рассказывали, что процент – этот одна сотая чего-либо. Умножая на 100 процентов, мы показываем, сколько в числе сотых.

От чего зависит величина КПД

Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.

максимальное значение

А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.

Как обозначается

В русских учебниках обозначается двояко. Либо так и пишется – КПД, либо обозначается греческой буквой η. Эти обозначения равнозначны.

Символ, обозначающий КПД

Символом является греческая буква эта η. Но чаще все же используют выражение КПД.

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Читайте также:  Полезные свойства масла чайного дерева для волос

определение

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

Формула работы в физике

Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.

коэффициент полезного дейтсвия

Это интересно

Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.

формула

Для сравнения, коэффициенты полезного действия различных устройств:

  • гидроэлектростанций 93-95%;
  • АЭС – не более 35%;
  • тепловых электростанций – 25-40%;
  • бензинового двигателя – около 20%;
  • дизельного двигателя – около 40%;
  • электрочайника – более 95%;
  • электромобиля – 88-95%.

Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.

Источник

где Т1и – вращающий момент и угловая скорость червяка;

Т2и – то же для колеса.

В предварительном расчете можно для z1= 1; 2; 4 соответст­венно принять = 0,7–0,75; 0,75–0,82; 0,87–0,92.

Невысокий КПД свидетельствует о том, что в червячной переда­че значительная часть энергии превращается в теплоту. Вызванное этим повышение температуры ухудшает защитные свойства масляного слоя, увеличивает опасность заедания и выхода передачи из строя.

22.2. Усилия в зацеплении. Расчет зубьев колес.

Тепловой расчет червячных передач

Статика передачи.При определении сил полагают, что главный вектор (равнодействующая) Fnконтактных давлений, действующих на площадках контакта зубьев, приложен в полюсе П и направлен по ли­нии зацепления (рис. 22.3). Силы, действующие в зацеплении:

Вращающий момент на колесе при ведущем червяке

Что такое коэффициент полезного действия передачи

Рис. 22.3. Усилия в червячной передаче

Расчет зубьев колес на выносливость при изгибе. Витки червя­ка на прочность не рассчитывают, так как его материал значительно прочнее материала колеса. При расчете используются те же соотноше­ния, что и при расчете косозубых колес.

где коэффициент формы зуба;

– модуль зацепления в нормальном сечении.

Расчет передач на контактную выносливость и заедание. Расчет передач обычно выполняют по контактным напряжениям, а допускаемые напряжения устанавливают на основе экспериментальных исследований и эксплуатации такими, чтобы исключить заедание зубьев. Условие прочностной надежности передачи имеет обычный вид;

Тепловой расчет и охлаждение червячных передач.Червячные передачи работают с большим выделением теплоты. В результате температура масла в ванне агрегата (редуктора) может достигнуть предельного значения (75–95 °С) и передача потеряет работоспособность из-за заедания.

Для предотвращения чрезмерного нагрева масла проводят расчет червячного редуктора на нагрев.

Уравнение теплового баланса для червячной передачи, работа­ющей в закрытом корпусе в непрерывном режиме без охлаждения, мож­но записать в виде

(22.1)

где η – КПД передачи;

– передаваемая мощность, кВт;

= 8–17,5 Вт/(м2∙°С) – коэффициент теплопередачи корпуса (большие значения принимают при хорошей циркуляции воздуха);

t и tсоответственно температура масла и окружающего воздуха, °С;

А – площадь свободной поверхности охлаждения корпуса, включая 70 %площади поверхности ребер и бобышек, м2;

коэффициент, учиты­вающий теплоотвод в раму или плиту (равен 0,3 при прилегании ос­нования корпуса по большой поверхности).

Площадь свободной поверхности можно найти из приближенного соотношения

,

где –межосевое расстояние переда­чи, мм.

Произведение в левой части равенства (22.1) равно количест­ву теплоты, выделяемой передачей. Правая часть этого равенства показывает количество теплоты, отводимой через поверхность корпу­са.

Если охлаждение вентилятором недостаточно эффективно, то следует применить водяное охлаждение или увеличить размеры редук­тора.

Глава 23. РЕМЕННЫЕ ПЕРЕДАЧИ

23.1. Общие сведения. Ремни. Шкивы

Ременная передача обычно состоит из двух шкивов 1 и 2, со­единенных между собой ремнем 3, и натяжного устройства 4, созда­ющего контактные давления между ремнем и шкивами и обеспечивающе­го за счет сил трения передачу энергии. Чаще всего начальное на­тяжение создается при монтаже передачи (без натяжного устройст­ва) (рис. 23.1, а).

Что такое коэффициент полезного действия передачи

Рис. 23.1. Ременные передачи

Обычно с помощью ремня передают движение между параллельными валами, вращающимися в одну сторону.

По форме сечения ремней различают плоско-, кругло- и клиноременные передачи (рис. 23.1, б, в, г).

Основные достоинства передач: простота конструкции, сравни­тельно малая стоимость, способность передавать вращательное движение на большие расстояния и работать с высокими скоростями, плав­ность работы и малый шум, малая чувствительность к толчкам, уда­рам и перегрузкам, отсутствие смазочной системы.

Читайте также:  Классный час мой режим дня полезные привычки

Основные недостатки: невысокая долговечность ремня, большие радиальные габариты, значительные нагрузки на валы и опоры, непостоянство передаточного отношения.

Передача используется как понижающая частоту вращения. Передаваемая мощность – до 50 кВт, окружная скорость – до 50 м/с, максимальное передаточное отношение 6 для передач без натяжного ролика и 10 для передач с натяжным роликом; допускаемая кратковременная перегрузка до 300 %.

Ременную передачу применяют обычно в качестве быстроходной ступени привода, устанавливая ведущий шкив на вал двигателя. В этом случае ее габариты и масса оказываются сравнительно неболь­шими.

Конструкции ремней и шкивов.Ремни должны обладать достаточно высокой прочностью при дей­ствии переменных нагрузок, иметь большой коэффициент трения в контакте со шкивом и высокую износостойкость.

Плоские ремни имеют прямоугольное сечение (см. рис. 23.1, б, 23.2) и малую толщину. Их получают путем соединения (склеиванием, сши­ванием) концов полос ткани (прорезиненной, хлопчатобумажной, шер­стяной, капроновой и др.), кожи и синтетических материалов.

Что такое коэффициент полезного действия передачи

Рис. 23.2. Конструкция плоского ремня

Ремни тканые толщиной 0,5 и 0,7 мм изготовляют из мешковых капроновых тканей просвечивающего переплетения. Их пропитывают раствором полиамида С-6 и покрывают пленкой на основе этого же полиамида, совмещенного с нитрильным каучуком. Растягивающую на­грузку в таких ремнях передают уточные нити ткани. Модуль упру­гости ремней Е = 1200–1370 МПа, напряжение начального натяжения ветвей = 5–10 МПа.

Ремни кордошнуровые прорезиненные выполняют с анидным кордшнуром диаметром 1,1 мм, который располагают в слое резины по винтовой линии. Для обеспечения прочности конструкции на наружной и внутренней поверхностях ремня имеется ткань ОТ-40. Ремни приме­няют при окружной скорости до 35 м/с.

В промышленности применяют синтетическиеремни фирмы «Хаба-сит» (Швейцария) толщиной 0,7–2,8 мм со склеенным стыком. По сравнению с ткаными эти ремни имеют большую (в три раза) проч­ность и допускают скорость до 100 м/с.

Плоские ремни из синтетических материалов получают преимущественное рас­пространение в высокоскоростных приводах благодаря высокой прочности и большой долговечности (напряжения изгиба в тонких ремнях невелики), хорошему сцеплению ремня со шкивом (коэффи­циент трения f = 0,5–0,6) и высокой тяговой способности, а также высокой точности вращения.

Круглыеремни (кожаные, капроновые и др.) применяют в маши­нах малой мощности (швейных и бытовых машинах, настольных станках и др.) (рис. 23.1, в).

Клиновыеремни в настоящее время используются наиболее широ­ко. Они обеспечивают передачам большую тяговую способность и меньшие габариты по сравнении с плоскоременными передачами, могут передавать вращение на несколько валов одновременно, допускают передаточное от­ношение i = 6–8 без натяжного ролика. Однако они менее быстроходны (скорость до 30 м/с), имеют более низкий КПД (на 1–2 %)и могут применяться лишь как открытые.

Рис. 23.3. Конструкции клиновых ремней

Клиновые ремни изготовляют беско­нечными, слойной конструкции (рис. 23.3, а, б), имеющей несущий кордовый слой 1 (работает на растяжение), резиновый или резинотканевый слой 3 и обертку из прорезиненной ткани 2. Несущий слой на основе материалов из химических волокон (капрона, лавсана, вискозы, анида располагают в продольном направлении ремня на нейтральной поверхности для разгрузки его от напряжений изгиба.

Модуль упругости прочных химических волокон и несущего слоя существенно выше модуля упругости резины, поэтому этот слой воспринимает основную часть нагрузки.

Резиновые слои (подушки), расположенные над несущим слоем (в зоне растяжения) и под ним (в зоне сжатия), обеспечивают ремню требуемую форму и демпфирующие свойства. Обертка из прорезиненной ткани придает ремню каркасность, предохраняет внутренние элементы от внешних воздействий и повышает износостойкость.

Клиновые ремни выполняют с углом клина φ= 40° и отношением большего основания трапециевидного сечения к высоте (нормальные ремни) и (узкие ремни). Размеры поперечно­го сечения (обозначаются О, А, Б, В, Г, Д, Е по мере увеличения площади) и длина нормальных ремней определены ГОСТ 1284–80.

Получили распространение поликлиновыеремни (рис. 23.4) с высокопрочным полиэфирным кордом в плоской части, так­же работающие на шкиве с клиновыми ка­навками. Рекомендуемое число ребер – от 2 до 20, допускаемое – 50. При одинако­вой мощности ширина такого ремня в 1,5–2 раза меньше ширины комплекта обычных клиновых ремней. Благодаря высокой гибкости допускается применение шкивов меньшего диаметра, чем в клиноременной передаче, большая быстро­ходность (до 40–50 м/с) и большие передаточные отношения (до 15).

Что такое коэффициент полезного действия передачи

Рис. 23.4. Поликлиновый ремень

Шкивы. Их конструктивные формы определяются преимущественно их размерами (обычно наружным диаметром), типом передачи, видом производства (единичное, серийное, массовое), возможностями пред­приятия-изготовителя.

Шкивы большого диаметра для облегчения выполняют с углубле­ниями и отверстиями, а также с четырьмя–шестью спицами (рис. 23.5). Такие шкивы условно состоят из трех частей: обода (1) – части шкива, несущей ремень; ступицы (2) – части шкива, с помощью которой его соединяют с валом; спиц (3) (или диска), свя­зывающих обод со ступицей.

Что такое коэффициент полезного действия передачи

Рис. 23.5. Конструкция шкивов

Шкивы изготовляют из чугуна марок СЧ 10 и СЧ 15, легких сплавов и пластмасс при работе передачи с небольшими скоростями и из сталей (25Л, 15 и др.) при окружных скоростях свыше 30 м/с.

Особенности монтажа и эксплуатации передач. Начальное натя­жение оказывает существенное влияние на работоспособность передач, поэтому его необходимо контролировать. Обычно контроль начального натяжения осуществляют путем прикладывания небольшой поперечной нагрузки (например, груза с силой тяжести Fg = 10–50 Н) посере­дине ветви и измерения стрелы f провисания ремня под грузом. В этом случае сила начального натяжения ( –по­ловина свободной длины ветви).

Читайте также:  О каком полезном ископаемом говорят земляная смола

23.2. Скольжение ремня

Кинематические и геометрические параметры передачи.Движение ремня по шкиву сопровождается упругим скольжением.

Причину этого явления можно понять из рассмотрения деформа­ции упругого ремня на заторможенном шкиве. Предположим, что к обо­им концам ремня подвешены одинаковые грузы, создающие в ремне си­лы F1(рис. 23.6, а). В результате между шкивом и ремнем возникнут некоторые контактные давления, а спадающие ветви ремня получат относительные удлинения

,

где Е · A – жесткость сечения ремня при растяжении.

Что такое коэффициент полезного действия передачи

Рис. 23.6. Схемы деформаций ремня на шкиве

Если теперь на одном конце, напри­мер, правом, несколько уменьшить груз и тем самым силу в ветви до значения F2 (рис. 23.6, б), то относительное удлинение правого конца уменьшится до значения , а относительное удлинение левого конца оста­нется прежним. От­носительное сокра­щение длины ( ) элемента правой спадающей ветви распростра­нится вдоль ремня по дуге обхвата от точки С к точке А, вызывая скольжение ремня по шкиву справа нале­во. Так как ремень прижат к шкиву, то скольжение вызовет силы трения qf, направленные навстречу относительному скольжению. Скольжение ремня и изменение деформаций прекратятся в некоторой точке В дуги обхвата. Ее положение можно определить из равенства разности сил F1 и F2 суммарной силе трения. На дуге ВА ремень будет находиться в покое. Сумма длин дуг АВ и ВС равна длине дуги обхвата шкива ремнем (АС), определяемой углом обхвата α. Угол αc , соответствующий дуге ВС, называют углом скольжения. По мере уменьшения силы F2 (или увеличения силы F1) дуга упругого скольжения растет за счет уменьшения дуги покоя. Так как скольжение ремня связано с его упругими свойствами, то его называют упругим.

Полезная нагрузка (окружная сила) Ftпередачи, развиваемая в основном за счет сил трения на дуге скольжения:

где F1 – сила натяжения ведущей ветви, набегающей на ведущий шкив;

F2– сила натяжения ведомой ветви, сбегающей с ведущего шкива;

T1вращающий момент;

d1 – диаметр ведущего шкива.

Положение точки В на шкиве также зависит от нагрузки и усло­вий трения.

Кинематика передачи. При вращении ведущего шкива с угловой скоростью его окружная скорость (здесь скорость ведущей ветви ремня). В результате упругого скольжения ремень сбегает с ведущего шкива в точке С со скоростью . Коэффициент упругого скольжения

где и –угловая скорость и диаметр ведомого шкива.

Передаточное отношение

В расчетах на основании экспериментов принимают ε = 0,01 – для плоскоременных передач; ε = 0,015–0,020 – для клиноременных передач.

Основные геометрические параметры. Минимальное межосевое расстояние в плоскоременных передачах

В клиноременных передачах (на основании практики)

а максимальное межосевое расстояние

Требуемая длина ремня для передачи при заданном (или жела­тельном) межосевом расстоянии a и угле обхвата αопределяется как сумма прямолинейных участков и дуг обхвата:

Угол обхвата меньшего шкива

23.3. Усилия и напряжения в ремнях.

Тяговая способность и КПД передачи

Начальное натяжение ремня – необходимое условие работы ре­менной передачи. Сила Fнач (начального натяжения ремня) вызывает в его ветвях силы

где γ – угол наклона ветви ремня к линии центров передачи. При действии вращающего момента T1 силы в ветвях будут равны F1 и F2 (рис. 23.7).

Что такое коэффициент полезного действия передачи

Рис. 23.7. Силы натяжения ветвей ремня

Напряжения в сечениях ведущей и ведомой ветвей ремня от начального натяжения

и при действии внешней нагрузки

где А – площадь поперечного сечения ремня.

Наибольшие напряжения испытывают наружные волокна в зоне контакта ремня с малым шкивом. Здесь к основным растягивающим напряжениям от полезной на­грузки добавляются дополнительные напряжения растяжения и соответственно от центробежных сил и изгиба ремня (как стержня) вокруг шкива (рис. 23.8), следовательно,

Что такое коэффициент полезного действия передачи

Рис. 23.8. Распределение напряжений в ремне

Фактическую тяговую способность передачи характеризует окружная сила Ft или вращающий момент T1, который может развить ведущий шкив:

(23.1)

где – коэффициент тяги.

Из равенства (23.1) видно, что тяговая способность передачи возрастает при увеличении силы F0 начального натяжения ветвей ремня и коэффициента тяги . С увеличением силы F0 возрастает сила натяжения F1 ведущей ветви под нагрузкой и существенно сни­жается долговечность ремня.

Для получения высокой тяговой способности передач с плоским ремнем рекомендуется обеспечивать α ≥ 150º.

Благодаря хорошему сцеплению ремня со шкивом клиноременные передачи хорошо работают при углах обхвата α ≥ 120º.

Коэффициент тяги

Экспериментально установлено, что коэффициенты тяги и упругого скольжения ремня ε взаимосвязаны (кривая скольжения, рис. 23.9).

Что такое коэффициент полезного действия передачи

Рис. 23.9. Кривая скольжения и зависимость КПД

от коэффициента тяги в клиноременной передаче

КПД передач. При работе плоскоременной передачи часть энер­гии расходуется на упругий гистерезис при циклическом деформиро­вании ремня (растяжение, сдвиг, изгиб), на скольжение ремня по шкивам, аэродинамическое сопротивление движению ремня и шкивов, а также трение в подшипниках валов передачи.

В клиноременной передаче к этим потерям добавляются потери на трение при радиальном перемещении ремня в процессе его входа в канавку и выхода из нее.

КПД ременной передачи

зависит от коэффициента тяги (см. соотношение (23.1)) и соответствующего ему коэффициента относительного скольжения ремня ε (см. рис. 23.9). Наибольший КПД соответствует некоторому значению на линейном участке кривой скольжения. Когда , КПД снижается из-за нарастания потерь на трение.

При оптимальной нагрузке = 0,97–0,98 для плоскоременной передачи и 0,92–0,97 – для клиноременной.

Источник