Что такое полезная мощность теплового двигателя

Что такое полезная мощность теплового двигателя thumbnail

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

https://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Что такое полезная мощность теплового двигателя

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Что такое полезная мощность теплового двигателя

Что такое полезная мощность теплового двигателя

Q1 – количество теплоты полученное от нагревания Что такое полезная мощность теплового двигателя

Q2 – количество теплоты, отданное холодильнику Что такое полезная мощность теплового двигателя

Что такое полезная мощность теплового двигателя – работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Что такое полезная мощность теплового двигателя

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Читайте также:  Банки чем они могут быть нам полезны

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Что такое полезная мощность теплового двигателя

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Что такое полезная мощность теплового двигателя

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Что такое полезная мощность теплового двигателя

Учитывая всё это, мы можем записать:

Что такое полезная мощность теплового двигателя

Время работы двигателя можно найти по формуле:

Что такое полезная мощность теплового двигателя

Из формулы КПД выразим среднюю мощность:

Что такое полезная мощность теплового двигателя.

Подставим числовые значения величин:

Что такое полезная мощность теплового двигателя

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

 Что такое полезная мощность теплового двигателя = Что такое полезная мощность теплового двигателя

Что такое полезная мощность теплового двигателя– это количество теплоты, отданное холодильнику

Что такое полезная мощность теплового двигателя

Что такое полезная мощность теплового двигателя

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 ноября 2019;
проверки требуют 4 правки.

Теплово́й дви́гатель — машина, в которой внутренняя энергия топлива превращается в механическую энергию.

История[править | править код]

Первой известной в настоящий момент тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ в. н. э. в Римской Империи. Это изобретение не получило распространения, вероятно из-за низкого уровня развития технологий того времени: тогда не был изобретен даже подшипник, столь необходимый для работы турбины

Теория[править | править код]

Работа, совершаемая двигателем, равна:

, где:

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

Типы тепловых двигателей[править | править код]

Двигатель Стирлинга[править | править код]

Поршневой двигатель внешнего сгорания[править | править код]

Поршневой двигатель внутреннего сгорания[править | править код]

Роторный (турбинный) двигатель внешнего сгорания[править | править код]

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия.

Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще.

Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания[править | править код]

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Читайте также:  Как кушать имбирь и чем полезен

Реактивные и ракетные двигатели[править | править код]

Реактивный двигатель представляет собой совмещенный тепловой двигатель и движитель, в нём внутренняя энергия топлива преобразуется в кинетическую энергию реактивной струи разогретого рабочего тела. Реактивные двигатели отбрасывают нагретое рабочее тело с большой скоростью, за счет его проистечения, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. В тепловых реактивных двигателях обычно используется химическое топливо в газообразном, жидком или твёрдом состоянии, порождающее разогретый газ при сгорании.
Воздушно-реактивные двигатели используют газообразный окислитель из окружающей среды, тогда как ракетные двигатели снабжаются запасами всех компонентов рабочего тела с носителя и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Используются для приведения в движение самолётов, ракет и космических аппаратов.

Твёрдотельные двигатели[править | править код]

Такие двигатели используют твёрдый материал (вещество в твёрдой фазе) в качестве рабочего тела. Работа совершается при изменении формы рабочего тела. Позволяют использовать малые перепады температур.[1]

Примеры:

  • Johnson thermoelectric energy converter (JTEC) — использует электрохимическое окисление и восстановление водорода в паре ячеек, реализует тепловой цикл, приближенный к циклу Джона Эрикссона[2]
  • металлические двигатели, использующие изменение формы различных твердых сплавов из-за температуры, например составов с памятью формы или теплового расширения твердых тел[3]

Примечания[править | править код]

Ссылки[править | править код]

  • https://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heaeng.html
  • https://www.bluffton.edu/homepages/facstaff/bergerd/NSC_111/thermo4.html
  • https://aether.lbl.gov/www/classes/p10/heat-engine.html

Источник

Мощность технического оборудования или энергетических установок (аппаратов, агрегатов), отдаваемая ими для совершения работы, указана в их технических характеристиках. Но это не значит, что вся она используется по прямому назначению для достижения результата. Только полезная мощность расходуется на выполнение работы.

Общее определение мощности

Определение и формула полезной мощности

Стоит рассмотреть понятие полезной мощности и формулу на примере электрической цепи. Та мощность, которую источник питания (ИП), в частности, тока, развивает в замкнутой цепи, будет полной мощностью.

Схема цепи

Цепь включает в себя: источник тока, имеющий ЭДС (E), внешнюю цепь с нагрузкой R и внутреннюю цепь ИП, сопротивление которого R0. Формула полной (общей) мощности равна:

Pобщ = E*I.

Здесь I – это значение тока, проходящего по цепи (А), а E – величина ЭДС (В).

Внимание! Падение напряжения на каждом из участков будет равно U и U0, соответственно.

Значит, формула примет вид:

Pобщ = E*I = (U + U0) *I = U*I + U0*I.

Видно, что значение произведения U*I равняется мощности, отдаваемой источником на нагрузке, и соответствует полезной мощности Pпол.

Величина, равная произведению U0*I, соответствует мощности, которая теряется внутри ИП на нагрев и преодоление внутреннего сопротивления R0. Это мощность потерь P0.

Подставляемые в формулу значения показывают, что сумма полезной и потерянной мощностей составляют общую мощность ИП:

Pобщ=Pпол+P0.

Важно! При работе любого аппарата (механического или электрического) полезной мощностью будет та, которая останется для совершения нужной работы после преодоления факторов, вызывающих потери (нагрев, трение, противодействующие силы).

Параметры источника питания

На практике часто приходится думать, какой должна быть мощность источника тока, сколько нужно ватт (вт) или киловатт (квт) для обеспечения бесперебойной работы устройства. Для понимания сути нужно иметь представления о таких понятиях, применяемых в физике, как:

  • полная энергия цепи;
  • ЭДС и напряжение;
  • внутреннее сопротивление источника питания;
  • потери внутри ИП;
  • полезная мощность.

Независимо от того, какую энергию выдаёт источник (механическую, электрическую, тепловую), мощность его должна подбираться с небольшим запасом (5-10%).

Полная энергия цепи

При включении в цепь нагрузки, которая будет потреблять энергию от источника тока (ИТ), ток будет совершать работу. Энергия, выделяемая на всех включенных в цепь потребителях и элементах цепи (провода, электронные компоненты т.д.), носит название полной. Источник энергии может быть любой: генератор, аккумулятор, тепловой котёл. Цифра значения полной энергии будет складываться из энергии, затрачиваемой источником на потери, и количества, затрачиваемого на выполнение конкретной работы.

ЭДС и напряжение

В чём разница между этими двумя понятиями?

ЭДС – электродвижущая сила, это напряжение, которое сторонние силы (химическая реакция, электромагнитная индукция) создают внутри источника тока (ИТ). ЭДС – это сила перемещения электрических зарядов в ИТ.

ЭДС определение

К сведению. Измерить значение E (ЭДС) представляется возможным только в режиме холостого хода (х.х.). Подключение любой нагрузки вызывает потерю напряжения внутри ИП.

Напряжение (U) – физическая величина, представляющая собой разность потенциалов ϕ1 и ϕ2 на выходе источника напряжения (ИН).

Разность потенциалов

Полезная мощность

Определение понятия полной мощности применяют не только в отношении электрических цепей. Оно применимо и по отношению к электродвигателям, трансформаторам и прочим устройствам, способным потреблять, как активную, так и реактивную составляющую энергии.

Потери внутри источника питания

Подобные потери происходят на внутреннем сопротивлении двухполюсника. У аккумулятора это сопротивление электролита, у генератора – обмоточное сопротивление, провода выводов которого выходят из корпуса.

Внутреннее сопротивление источника питания

Взять и просто измерить R0 тестером не получится, узнать его обязательно нужно для вычисления потерь Р0. Поэтому применяют косвенные методы.

Читайте также:  Мед с молоком полезен или нет

Косвенный метод определения R0 заключается в следующем:

  • в режиме х.х. замеряют E (В);
  • при включенной нагрузке Rн (Ом) измеряют Uвых (В) и ток I (А);
  • падение напряжения внутри источника считают по формуле:

U0=E-Uвых.

На последнем этапе находят R0=U0/I.

Схема для измерения R0

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

Формула имеет вид:

η = А/Q,

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае  η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого.

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

КПД двигателя внутреннего сгорания

Коэффициент полезного действия нагрузки

Какой бы ни была мощность источника, кпд электроприборов никогда не будет равна 100%.

Исключение. Принцип теплового насоса, применяемый в работе холодильников и кондиционеров, приближает их КПД к 100%. Там нагрев одного радиатора приводит к охлаждению другого.

В остальном случае энергия уходит на посторонние эффекты. Чтобы уменьшить этот расход, нужно обращать внимание на сопутствующие факторы:

  • при обустройстве освещения – на конструкцию светильников, устройство отражателей и цвет окраски помещений (отражающий или светопоглощающий);
  • при организации отопления – на теплоизоляцию тепловодов, установку рекуперационных вытяжных устройств, утепление стен, потолка и пола, монтаж качественных оконных стеклопакетов;
  • при организации электропроводки – правильно подбирать марку и сечение проводников соответственно будущей подключаемой нагрузке;
  • при монтаже электродвигателей, трансформаторов и других потребителей переменного тока – на значение cosϕ.

Снижение затрат на потери однозначно приводит к увеличению коэффициента полезного действия при совершении источником энергии работы на нагрузку.

Снижение влияния факторов, вызывающих потери мощности, увеличивает процент полезной мощности, необходимой для совершения работы. Это возможно при выявлении причин потерь и их устранении.

Видео

Источник