Что такое полезная нагрузка и от чего она зависит
Шаттл «Индевор» с открытым отсеком полезной нагрузки
Поле́зная нагру́зка (англ. payload[1]) — термин, который применяется во многих областях науки и техники.
Часто вводится параметр «эффективности», как отношение «веса» полезной нагрузки к полному «весу» системы. При этом «вес» может измеряться как в килограммах/тоннах, так и битах (при передаче пакетов по сети), или минутах/часах (при расчёте эффективности процессорного времени), или в других единицах.
Примеры областей использования термина[править | править код]
В грузо-, пассажиро-доставке и перевозке. При расчёте транспортируемого веса обычно выделяют: конструкцию и полезную нагрузку. Иногда отдельно выделяют топливо, особенно в авиации, космонавтике (в наземном транспорте топливо выделяют реже).
В качестве «полезной нагрузки» могут выступать люди, грузы, вооружение, оборудование для проведения исследований и т. п. (например, оборудование для аэрофотосъёмки или оборудование для измерения параметров полёта при тестировании новых транспортных средств).
В качестве транспортного средства (средства доставки, перевозки, транспортировки) могут выступать:
- Самолёт
- Ракета-носитель
- и другие транспортные средства
В артиллерии:
- снаряды могут быть как без полезной нагрузки (цельный сплошной снаряд), так и с полезной нагрузкой (взрывчатое вещество, отравляющие вещества, листовки и т. д.); (см., например, Снаряд)
В программировании, вычислительной технике и информатике:
- В описании протоколов передачи данных — часть пакета данных без служебной информации (без заголовка, битов синхронизации и т. п.), собственно полезные данные (см., например, IP, Плезиохронная цифровая иерархия)
- В описании вирусов — часть червя, которая производит деструктивные действия с данными, копирование информации с заражённого компьютера и т. д. (в отличие от «транспортной части червя» («инфекционной» части, эксплойта), которая занимается его доставкой на атакуемую машину и заражением машины) (см. Сетевые черви)
- При описании быстродействия компьютерной системы — та часть процессорного времени, которая тратится на сами полезные вычисления (в отличие от времени, которое тратится, например, на согласование в многопроцессорной системе, либо на различные служебные вычисления, например, связанные с работой операционной системы, или времени, когда полезных вычислительных задач нет и процессор простаивает) (см. Т-Система)
В строительстве и архитектуре:
- та часть нагрузки, которая приходится на «несомые» части конструкции, за вычетом нагрузки (веса) самих «несущих» конструкций (см. Железобетон)
В электронике и электротехнике:
- Часть тока, которая тратится на полезную работу
- Элемент электрической сети, включённый в общую электрическую цепь, который делает полезную работу (в отличие от остальных частей электрической схемы, то есть за вычетом проводов, источников питания и т. д.) (например: лампа, двигатель)
Полезная нагрузка космического аппарата[править | править код]
Наиболее часто термин «полезная нагрузка» применяется при описании космических аппаратов. При этом в качестве полезной нагрузки выступают спутники, космические корабли (с грузами, либо с космонавтами) и т. д.
Необходимо учитывать, что «вес, выводимый на орбиту» (например, спутник связи) и «вес, доставляемый к МКС» — это разные вещи. Ведь при доставке к МКС необходимо доставить на орбиту собственную двигательную установку космического корабля (вместе с топливом для неё), систему управления, сам корпус космического корабля и т. д. Так, например, масса КК «Союз» составляет чуть больше 7 тонн, но до МКС «долетает» обычно всего 2,5 тонны груза из выведенных на орбиту 7 тонн.
Поэтому, в зависимости от типа космических аппаратов, существует два толкования этого термина: ПН космических аппаратов и ПН ракет-носителей. Используя пример с КК «Союз», ПН «Союза» составляет 2,5 тонны, в то время как ПН ракеты-носителя — 7 тонн.
Примечания[править | править код]
Источник
Полезная нагрузка, как в области телекоммуникаций, так и в области вычислений, называется частью передаваемого пакета данных, в котором находится фактическое сообщение. Часто сетевые протоколы устанавливают максимальный предел длины полезной нагрузки. Кроме того, в контексте вредоносного ПО полезная нагрузка обычно относится к вредоносным кодам, которые могут нанести вред целевому пользователю. Для распространения различных вредоносных программ может быть применен широкий спектр методов. Сюда входят черви, электронная почта, фишинг и многие другие цифровые механизмы доставки. 2
Двухфазный метод применяется виртуальными террористами для обхода системной защиты. Они делают это, держа в руках полезную нагрузку пакета данных, которая рассматривается как часть, вызывающая повреждение жертвы отдельно от переносчика инфекции. Однако полезная нагрузка вредоносного ПО не способна справиться с указанными ограничениями максимальной пропускной способности.
Функциональность
Полезная нагрузка IP-пакета
IP-пакет может иметь полезную нагрузку, которая имеет команду, выданную конечным пользователем, точно так же, как и запрос веб-контента. Как правило, он несет полезную нагрузку, которая состоит из фактических данных, передаваемых сервером в ответ на запрос пользователя. В соответствующих спецификациях протоколов обычно указываются пределы полезной нагрузки на PDU. Общая длина поля ограничивает максимальный размер полезной нагрузки. Для IP-пакетов в заголовке длина области составляет 16 бит, а это означает, что максимально возможное значение равно 2 к мощности 16, что означает, что максимальное потенциальное значение для длины пакета составляет 65 535 минус количество байт, которое действительно требуется для заголовка пакета.
Когда пакеты данных отправляются через Интернет, каждое из устройств будет передано, включая информацию заголовка и полезную нагрузку. Заголовок будет той частью, которая используется для определения источника и адреса назначения пакета данных. Передаваемое сообщение — это то, что определяется как полезная нагрузка. Поскольку информация заголовка или накладные расходы будут использоваться только в процессе передачи, принимающая сторона больше не будет видеть это, когда пакет данных уже достигнет места назначения. Таким образом, полезная нагрузка является единственной информацией, которая будет получена системой назначения.
Пределы полезной нагрузки сетевого протокола также значительны, поскольку они могут повлиять на производительность протокола; меньшая полезная нагрузка означает, что необходимо создать больше пакетов данных и передать их на том же объеме. Большая полезная нагрузка также снизит потребность в генерации большего количества пакетов, но также требует наличия быстрой и стабильной сетевой среды, способной доставлять большие объемы данных без задержек, вызванных ошибками в переходных сетевых условиях.
Полезная нагрузка является частью текста частного пользователя, который также может содержать вредоносные программы, такие как черви или вирусы, которые выполняют вредоносные действия, такие как удаление данных, отправка спама или шифрование данных. В дополнение к полезной нагрузке, такие вредоносные программы обычно также имеют накладные расходы код, направленный на простое распространение себя или избегая обнаружения. С другой стороны, в компьютерных сетях данные, которые будут передаваться, рассматриваются как полезная нагрузка, но в большинстве случаев они инкапсулируются в некоторый кадр, состоящий из битов кадрирования и последовательности проверки кадров. Ниже приводятся его примеры: Ethernet-кадры, Point to Point Protocol-кадры, Fiber Channel-кадры и V.42modem-кадры.
Полезная нагрузка от вредоносного ПО
Полезная нагрузка также относится к компоненту компьютерного вируса, который осуществляет вредоносную деятельность. Кроме того, когда пакеты данных отправляются через Интернет, каждое из устройств будет передаваться, включая информацию заголовка и полезную нагрузку. Заголовок будет той частью, которая используется для определения источника и адреса назначения пакета данных. Передаваемое сообщение — это то, что определяется как полезная нагрузка. Поскольку информация заголовка или накладные расходы будут использоваться только в процессе передачи, принимающая сторона больше не будет видеть это, когда пакет данных уже достигнет места назначения. Таким образом, полезная нагрузка является единственной информацией, которая будет получена системой назначения.
Вирусы, несущие большую полезную нагрузку, также более вредны для цифровой системы. Есть несколько вирусов, копирующих себя с одного устройства на другое. Другие вирусы могут красть данные или файлы, прослушивать или называть их несанкционированным доступом, уничтожать данные и могут повлечь за собой другие последствия. Также возможно, что вирус может нести многократную полезную нагрузку. В настоящее время более вероятно, что вредоносное ПО будет включать в себя полезную нагрузку, которая приведет к повреждению файлов в системе; вместо этого оно обеспечит доступ к компьютеру пользователя через черный ход и кражу конфиденциальной информации.
Ниже приведены некоторые из способов выполнения разрушающей нагрузки:
- При использовании незащищенного компьютера (компьютера без установленного антивируса), подключенного к сети.
- При загрузке компьютера с зараженного съемного носителя.
- Открывая зараженный файл.
- Выполняя зараженную программу.
- Активировав логическую бомбу.
Источник
В зданиях и сооружениях на конструкции из профнастила действуют следующие виды рабочих нагрузок:
- постоянные (статические) нагрузки:
- собственный вес профнастила;
- собственный вес частей ограждающих конструкций;
- временные нагрузки:
- полезные нагрузки (вес людей, животных, оборудования на перекрытия жилых и общественных зданий);
- снеговые нагрузки;
- ветровые нагрузки.
Из таблиц СНиП 2.01.07-85* «Нагрузки и воздействия» (звездочка в обозначении СНиП говорит о том, что в первоначальную редакцию были внесены изменения), а также при теоретическом подсчете веса конструкций мы получаем так называемые нормативные нагрузки G0. В прочностных расчетах используют расчетные нагрузки G, которые получают путем умножения нормативной нагрузки G0 на коэффициент надежности по нагрузке Yf. Коэффициент Yf — учитывает отклонения реальной нагрузки от теоретической за счет строительных допусков, влажности материала, отклонений в объемном весе для ряда материалов и тому подобного. В табл. 2 приведены значения коэффициента надежности по нагрузке для наиболее распространенных видов конструкций и нагрузок.
Таблица 2. Значения коэффициента надежности по нагрузке
Виды конструкций и нагрузок | Коэффициент надежности по нагрузке Yf |
---|---|
Металлические конструкции | 1,05 |
Бетонные (плотностью > 1600 кг/м³), железобетонные, каменные, деревянные конструкции | 1,1 |
Бетонные (плотностью < 1600 кг/м³) конструкции, выравнивающие, изоляционные и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые: в заводских условиях на строительной площадке | 1,2 |
Равномерно распределенные временные нагрузки на плиты перекрытий, лестницы: при полном нормативном значении менее 2,0 кПа (200 кг/м²) при полном нормативном значении 2,0 кПа (200 кг/м²) и более | 1,3 1,2 |
Снеговая нагрузка | 1,4 |
Ветровая нагрузка | 1,4 |
Основными нагрузками, действующими на профнастил, являются:
- в кровельном покрытии — собственный вес конструкции кровли (постоянная нагрузка), снеговая нагрузка, ветровая нагрузка (временные нагрузки);
- в стенах, оградах и заборах — ветровая нагрузка (временная нагрузка);
- в перекрытиях — собственный вес профнастила, вес пола, вес покрытия пола, вес крепежных элементов, вес конструкции потолка, включая светильники и вентиляцию, вес перегородок (постоянная нагрузка) и вес людей и оборудования (временная нагрузка).
Допущения, принятые в данном Пособии в целях упрощения расчетов:
- временная нагрузка принимается равномерно распределенной;
- собственный вес профнастила ввиду его малой величины по сравнению с другими видами нагрузок (5—7 %) и незначительных разбросов для различных видов профнастила (от 3,9 до 24,1 кг/м²) принимается равным 10,0 кг/м².
Постоянные нагрузки, действующие на профнастил горизонтально расположенной кровли, рассчитываются следующим образом:
- собственный вес 1 м² конструкции холодной кровли равен собственному весу 1 м² профнастила (10 кг/м²), умноженному на коэффициент надежности по нагрузке Yf= 1,05;
- собственный вес 1 м² теплой кровли, приходящийся на нижний несущий слой профнастила (в конструкции, представленной на рис. 3, раздел Области применения профнастила), определяется в зависимости от климатического района и складывается из:
- собственного веса профнастилов верхней и нижней обшивки (20 кг/м²), умноженного на коэффициент надежности по нагрузке Yf = 1,05;
- веса соединительных элементов между верхней и нижней обшивками (6—7 кг/м²), умноженного на коэффициент надежности по нагрузке Yf = 1,05;
- веса пароизоляции (2 кг/м²), умноженного на коэффициент надежности по нагрузке Yf= 1,3;
- веса теплоизоляции (10—35 кг/м²), умноженного на коэффициент надежности по нагрузке Yf= 1,3.
Суммарный вес 1 м2 теплой кровли может составить от 30 до 60 кг. В зависимости от угла наклона кровли (табл. 5, схема 1) величина постоянной нагрузки в проекции на горизонтальную плоскость корректируется по формуле:
G = G0Yf cos α, (1)
где G — расчетная величина постоянной нагрузки в проекции на горизонтальную плоскость; G0 — нормативная (теоретическая) величина постоянной нагрузки на 1 м² поверхности кровли, наклоненной к горизонту под углом α; Yf — коэффициент надежности по нагрузке.
Расчетные снеговые нагрузки с учетом Yf = 1,4, действующие на профилированные настилы кровли, приводятся в табл. 3.
Таблица 3. Расчетные снеговые нагрузки, действующие на профилированные настилы кровли
Район строительства | I | II | III | IV | V | VI | VII | VIII |
---|---|---|---|---|---|---|---|---|
Расчетная снеговая нагрузка, S°, к Па (кг/м²) | 0,8 (80) | 1,2 (120) | 1,8 (180) | 2,4 (240) | 3,2 (320) | 4,0 (400) | 4,8 (480) | 5,6 (560) |
Районы строительства, приведенные в табл. 3, соответствуют районам по карте распределения снегового покрова на территории России. В соответствии с требованиями СНиП 2,01.07-85* приведенная в табл. 3 расчетная снеговая нагрузка действует на кровли, расположенные с уклоном α не более 25°, без перепадов высот. Для покрытий с уклоном более 25° снеговая нагрузка снижается и при уклоне кровли 60° и более становится равной нулю. Для промежуточных уклонов кровли в диапазоне α от 25° до 60° значения снеговой нагрузки изменяются пропорционально от 1,0 до 0 и рассчитываются по формуле
Sα = S0(60° — α)/(60° — 25°), (2)
где Sα — расчетная снеговая нагрузка для кровли с уклоном в диапазоне α = 25° — 60°; S0 — расчетная снеговая нагрузка для кровли с уклоном в диапазоне α от 0° до 25° в соответствии с табл. 3.
Расчетные ветровые нагрузки с учетом коэффициента надежности по нагрузке Yf = 1,4, действующие на кровлю, а также стены зданий, ограды и заборы высотой не более 10 м, в соответствии со СНиП 2.01.07-85* приводятся в табл. 4.
Таблица 4. Расчетные ветровые нагрузки, действующие на профилированные настилы кровли, стен зданий и сооружений
Район строительства | I | II | III | IV | V | VI | VII |
---|---|---|---|---|---|---|---|
Расчетная ветровая нагрузка, Wp, кПа (кг/м²) | 0,32 (32) | 0,42 (42) | 0,53 (53) | 0,67 (67) | 0,84 (84) | 1,02 (102) | 1,19 (119) |
Районы строительства, указанные в табл. 4, соответствуют районам по карте распределения ветрового давления на территории России.
Значения расчетной ветровой нагрузки табл. 4 корректируются на величину коэффициента аэродинамического сопротивления ce, характеризующего особенности обтекания воздушным потоком конструкции зданий (сооружений) заданной формы.
Таблица 5. Расчетные значения коэффициента аэродинамического сопротивления
Схемы зданий, сооружений и ветровых нагрузок | Определение коэффициента аэродинамического сопротивления ce | |||||
Отдельно стоящие плоские, сплошные конструкции, а также вертикальные и отклоняющиеся от вертикальных не более чем на 15° поверхности: с наветренной стороны с подветренной стороны | ce = +0,8 | |||||
Здания с двухскатными покрытиями Схема 1 | Коэф. | α, град. | Значения ce1, ce2 при H/L, равном | |||
0,5 | 1 | ≤2 | ||||
ce1 | 20 40 80 | +0,2 +0,4 +0,8 | -0,6 -0,4 +0,3 +0,8 | -0,7 -0,7 -0,2 +0,8 | -0,8 -0,8 -0,4 +0,8 | |
ce2 | ≥60 | -0,4 | -0,4 | -0,5 | -0,8 | |
Схема 2 H – высота стены здания L – глубина здания B – ширина здания | B/L | Значения ce3 при H/L, равном | ||||
≥0,5 | 1 | ≥2 | ||||
ce3 | ≥1 ≥2 | -0,4 -0,5 | -0,5 -0,6 | -0,6 -0,6 | ||
Примечание. При ветре, перпендикулярном торцу здания, для всей поверхности кровли ce = 0,7. |
Wpa = Wpce , (3)
Значения коэффициента аэродинамического сопротивления ce для различных строительных объектов приведены в табл. 5. Знак «плюс» перед коэффициентом ce в таблице означает, что давление ветра направлено на соответствующую поверхность конструкции, а знак «минус» — от поверхности конструкции.
Ветровая нагрузка всегда действует перпендикулярно поверхности элемента здания и сооружения.
Расчетные значения равномерно распределенных полезных нагрузок в соответствии со СНиП 2.01.07-85* с учетом коэффициента Yf действующие на перекрытия, приведены в табл. 6.
Таблица 6. Расчетные полезные нагрузки, действующие на перекрытия
Здания и помещения | Расчетное значение нагрузки Gполезн кПа (кг/м²) |
---|---|
Квартиры жилых зданий, детские дошкольные учреждения, дома отдыха, общежития, гостиницы и т.п. | 1,95 (195) |
Административные здания, учреждения, научные организации, классные помещения, бытовые помещения промышленных предприятий и общественных зданий | 2,4 (240) |
Кабинеты и лаборатории научных, лечебных и образовательных учреждений | 2,4 (240) |
Залы: читальные кафе, ресторанов, столовых собраний, совещаний, зрительные, концертные, спортивные | 2,4 (240) 3,6 (360) 4,8 (480) |
Чердачные помещения | 0,91 (91) |
Перекрытия на участках с возможным скоплением людей | 4,8 (480) |
Источник
Шаттл «Индевор» с открытым отсеком полезной нагрузки
Поле́зная нагру́зка (англ. payload[1]) — термин, который применяется во многих областях науки и техники.
Часто вводится параметр «эффективности», как отношение «веса» полезной нагрузки к полному «весу» системы. При этом «вес» может измеряться как в килограммах/тоннах, так и битах (при передаче пакетов по сети), или минутах/часах (при расчёте эффективности процессорного времени), или в других единицах.
Примеры областей использования термина
В грузо-, пассажиро-доставке и перевозке. При расчёте транспортируемого веса обычно выделяют: конструкцию и полезную нагрузку. Иногда отдельно выделяют топливо, особенно в авиации, космонавтике (в наземном транспорте топливо выделяют реже).
В качестве «полезной нагрузки» могут выступать люди, грузы, вооружение, оборудование для проведения исследований и т. п. (например, оборудование для аэрофотосъёмки, или оборудование для измерения параметров полёта при тестировании новых транспортных средств).
В качестве транспортного средства (средства доставки, перевозки, транспортировки) могут выступать:
- Самолёт
- Ракета-носитель
- и другие транспортные средства
В артиллерии:
- снаряды могут быть как без полезной нагрузки (цельный сплошной снаряд), так и с полезной нагрузкой (взрывчатое вещество, ОВ, листовки и т. д.); (см., напр., Снаряд)
В программировании, вычислительной технике и информатике:
- В описании протоколов передачи данных — часть пакета данных без служебной информации (без заголовка, битов синхронизации и т. п.), собственно полезные данные (см., напр., IP, Плезиохронная цифровая иерархия)
- В описании вирусов — часть червя, которая производит деструктивные действия с данными, копирование информации с заражённого компьютера и т. д. (в отличие от «транспортной части червя» («инфекционной» части, эксплойта), которая занимается его доставкой на атакуемую машину и заражением машины) (см. Сетевые черви)
- При описании быстродействия компьютерной системы — та часть процессорного времени, которая тратится на сами полезные вычисления (в отличие от времени, которое тратится, например, на согласование в многопроцессорной системе, либо на различные служебные вычисления, например, связанные с работой операционной системы, или времени, когда полезных вычислительных задач нет и процессор простаивает) (см. Т-Система)
В строительстве и архитектуре:
- та часть нагрузки, которая приходится на «несомые» части конструкции, за вычетом нагрузки (веса) самих «несущих» конструкций (см. Железобетон)
В электронике и электротехнике:
- Часть тока, которая тратится на полезную работу
- Элемент электрический сети, включенный в общую электрическую цепь, который делает полезную работу (в отличие остальных частей электрической схемы, т. е. за вычетом проводов, источников питания и т. д.) (например: лампа, двигатель)
Полезная нагрузка космического аппарата
Наиболее часто термин «полезная нагрузка» применяется при описании космических аппаратов. При этом в качестве полезной нагрузки выступают спутники, космические корабли (с грузами, либо с космонавтами) и т. д.
Необходимо учитывать, что «вес, выводимый на орбиту» (например, спутник связи) и «вес, доставляемый к МКС» — это разные вещи. Ведь при доставке к МКС необходимо доставить на орбиту собственную двигательную установку космического корабля (вместе с топливом для неё), систему управления, сам корпус космического корабля и т. д. Так, например, масса КК «Союз» составляет чуть больше 7 тонн, но до МКС «долетает» обычно всего 2,5 тонны груза из выведенных на орбиту 7 тонн.
Поэтому, в зависимости от типа космических аппаратов, существует два толкования этого термина: ПН космический аппаратов и ПН ракет-носителей. Используя пример с КК «Союз», ПН «Союза» составляет 2,5 тонны, в то время как ПН ракеты-носителя — 7 тонн.
Примечания
Источник