Что такое полезная нагрузка в строительстве
Шаттл «Индевор» с открытым отсеком полезной нагрузки
Поле́зная нагру́зка (англ. payload[1]) — термин, который применяется во многих областях науки и техники.
Часто вводится параметр «эффективности», как отношение «веса» полезной нагрузки к полному «весу» системы. При этом «вес» может измеряться как в килограммах/тоннах, так и битах (при передаче пакетов по сети), или минутах/часах (при расчёте эффективности процессорного времени), или в других единицах.
Примеры областей использования термина[править | править код]
В грузо-, пассажиро-доставке и перевозке. При расчёте транспортируемого веса обычно выделяют: конструкцию и полезную нагрузку. Иногда отдельно выделяют топливо, особенно в авиации, космонавтике (в наземном транспорте топливо выделяют реже).
В качестве «полезной нагрузки» могут выступать люди, грузы, вооружение, оборудование для проведения исследований и т. п. (например, оборудование для аэрофотосъёмки или оборудование для измерения параметров полёта при тестировании новых транспортных средств).
В качестве транспортного средства (средства доставки, перевозки, транспортировки) могут выступать:
- Самолёт
- Ракета-носитель
- и другие транспортные средства
В артиллерии:
- снаряды могут быть как без полезной нагрузки (цельный сплошной снаряд), так и с полезной нагрузкой (взрывчатое вещество, отравляющие вещества, листовки и т. д.); (см., например, Снаряд)
В программировании, вычислительной технике и информатике:
- В описании протоколов передачи данных — часть пакета данных без служебной информации (без заголовка, битов синхронизации и т. п.), собственно полезные данные (см., например, IP, Плезиохронная цифровая иерархия)
- В описании вирусов — часть червя, которая производит деструктивные действия с данными, копирование информации с заражённого компьютера и т. д. (в отличие от «транспортной части червя» («инфекционной» части, эксплойта), которая занимается его доставкой на атакуемую машину и заражением машины) (см. Сетевые черви)
- При описании быстродействия компьютерной системы — та часть процессорного времени, которая тратится на сами полезные вычисления (в отличие от времени, которое тратится, например, на согласование в многопроцессорной системе, либо на различные служебные вычисления, например, связанные с работой операционной системы, или времени, когда полезных вычислительных задач нет и процессор простаивает) (см. Т-Система)
В строительстве и архитектуре:
- та часть нагрузки, которая приходится на «несомые» части конструкции, за вычетом нагрузки (веса) самих «несущих» конструкций (см. Железобетон)
В электронике и электротехнике:
- Часть тока, которая тратится на полезную работу
- Элемент электрической сети, включённый в общую электрическую цепь, который делает полезную работу (в отличие от остальных частей электрической схемы, то есть за вычетом проводов, источников питания и т. д.) (например: лампа, двигатель)
Полезная нагрузка космического аппарата[править | править код]
Наиболее часто термин «полезная нагрузка» применяется при описании космических аппаратов. При этом в качестве полезной нагрузки выступают спутники, космические корабли (с грузами, либо с космонавтами) и т. д.
Необходимо учитывать, что «вес, выводимый на орбиту» (например, спутник связи) и «вес, доставляемый к МКС» — это разные вещи. Ведь при доставке к МКС необходимо доставить на орбиту собственную двигательную установку космического корабля (вместе с топливом для неё), систему управления, сам корпус космического корабля и т. д. Так, например, масса КК «Союз» составляет чуть больше 7 тонн, но до МКС «долетает» обычно всего 2,5 тонны груза из выведенных на орбиту 7 тонн.
Поэтому, в зависимости от типа космических аппаратов, существует два толкования этого термина: ПН космических аппаратов и ПН ракет-носителей. Используя пример с КК «Союз», ПН «Союза» составляет 2,5 тонны, в то время как ПН ракеты-носителя — 7 тонн.
Примечания[править | править код]
Источник
В зданиях и сооружениях на конструкции из профнастила действуют следующие виды рабочих нагрузок:
- постоянные (статические) нагрузки:
- собственный вес профнастила;
- собственный вес частей ограждающих конструкций;
- временные нагрузки:
- полезные нагрузки (вес людей, животных, оборудования на перекрытия жилых и общественных зданий);
- снеговые нагрузки;
- ветровые нагрузки.
Из таблиц СНиП 2.01.07-85* «Нагрузки и воздействия» (звездочка в обозначении СНиП говорит о том, что в первоначальную редакцию были внесены изменения), а также при теоретическом подсчете веса конструкций мы получаем так называемые нормативные нагрузки G0. В прочностных расчетах используют расчетные нагрузки G, которые получают путем умножения нормативной нагрузки G0 на коэффициент надежности по нагрузке Yf. Коэффициент Yf — учитывает отклонения реальной нагрузки от теоретической за счет строительных допусков, влажности материала, отклонений в объемном весе для ряда материалов и тому подобного. В табл. 2 приведены значения коэффициента надежности по нагрузке для наиболее распространенных видов конструкций и нагрузок.
Таблица 2. Значения коэффициента надежности по нагрузке
Виды конструкций и нагрузок | Коэффициент надежности по нагрузке Yf |
---|---|
Металлические конструкции | 1,05 |
Бетонные (плотностью > 1600 кг/м³), железобетонные, каменные, деревянные конструкции | 1,1 |
Бетонные (плотностью < 1600 кг/м³) конструкции, выравнивающие, изоляционные и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые: в заводских условиях на строительной площадке | 1,2 |
Равномерно распределенные временные нагрузки на плиты перекрытий, лестницы: при полном нормативном значении менее 2,0 кПа (200 кг/м²) при полном нормативном значении 2,0 кПа (200 кг/м²) и более | 1,3 1,2 |
Снеговая нагрузка | 1,4 |
Ветровая нагрузка | 1,4 |
Основными нагрузками, действующими на профнастил, являются:
- в кровельном покрытии — собственный вес конструкции кровли (постоянная нагрузка), снеговая нагрузка, ветровая нагрузка (временные нагрузки);
- в стенах, оградах и заборах — ветровая нагрузка (временная нагрузка);
- в перекрытиях — собственный вес профнастила, вес пола, вес покрытия пола, вес крепежных элементов, вес конструкции потолка, включая светильники и вентиляцию, вес перегородок (постоянная нагрузка) и вес людей и оборудования (временная нагрузка).
Допущения, принятые в данном Пособии в целях упрощения расчетов:
- временная нагрузка принимается равномерно распределенной;
- собственный вес профнастила ввиду его малой величины по сравнению с другими видами нагрузок (5—7 %) и незначительных разбросов для различных видов профнастила (от 3,9 до 24,1 кг/м²) принимается равным 10,0 кг/м².
Постоянные нагрузки, действующие на профнастил горизонтально расположенной кровли, рассчитываются следующим образом:
- собственный вес 1 м² конструкции холодной кровли равен собственному весу 1 м² профнастила (10 кг/м²), умноженному на коэффициент надежности по нагрузке Yf= 1,05;
- собственный вес 1 м² теплой кровли, приходящийся на нижний несущий слой профнастила (в конструкции, представленной на рис. 3, раздел Области применения профнастила), определяется в зависимости от климатического района и складывается из:
- собственного веса профнастилов верхней и нижней обшивки (20 кг/м²), умноженного на коэффициент надежности по нагрузке Yf = 1,05;
- веса соединительных элементов между верхней и нижней обшивками (6—7 кг/м²), умноженного на коэффициент надежности по нагрузке Yf = 1,05;
- веса пароизоляции (2 кг/м²), умноженного на коэффициент надежности по нагрузке Yf= 1,3;
- веса теплоизоляции (10—35 кг/м²), умноженного на коэффициент надежности по нагрузке Yf= 1,3.
Суммарный вес 1 м2 теплой кровли может составить от 30 до 60 кг. В зависимости от угла наклона кровли (табл. 5, схема 1) величина постоянной нагрузки в проекции на горизонтальную плоскость корректируется по формуле:
G = G0Yf cos α, (1)
где G — расчетная величина постоянной нагрузки в проекции на горизонтальную плоскость; G0 — нормативная (теоретическая) величина постоянной нагрузки на 1 м² поверхности кровли, наклоненной к горизонту под углом α; Yf — коэффициент надежности по нагрузке.
Расчетные снеговые нагрузки с учетом Yf = 1,4, действующие на профилированные настилы кровли, приводятся в табл. 3.
Таблица 3. Расчетные снеговые нагрузки, действующие на профилированные настилы кровли
Район строительства | I | II | III | IV | V | VI | VII | VIII |
---|---|---|---|---|---|---|---|---|
Расчетная снеговая нагрузка, S°, к Па (кг/м²) | 0,8 (80) | 1,2 (120) | 1,8 (180) | 2,4 (240) | 3,2 (320) | 4,0 (400) | 4,8 (480) | 5,6 (560) |
Районы строительства, приведенные в табл. 3, соответствуют районам по карте распределения снегового покрова на территории России. В соответствии с требованиями СНиП 2,01.07-85* приведенная в табл. 3 расчетная снеговая нагрузка действует на кровли, расположенные с уклоном α не более 25°, без перепадов высот. Для покрытий с уклоном более 25° снеговая нагрузка снижается и при уклоне кровли 60° и более становится равной нулю. Для промежуточных уклонов кровли в диапазоне α от 25° до 60° значения снеговой нагрузки изменяются пропорционально от 1,0 до 0 и рассчитываются по формуле
Sα = S0(60° — α)/(60° — 25°), (2)
где Sα — расчетная снеговая нагрузка для кровли с уклоном в диапазоне α = 25° — 60°; S0 — расчетная снеговая нагрузка для кровли с уклоном в диапазоне α от 0° до 25° в соответствии с табл. 3.
Расчетные ветровые нагрузки с учетом коэффициента надежности по нагрузке Yf = 1,4, действующие на кровлю, а также стены зданий, ограды и заборы высотой не более 10 м, в соответствии со СНиП 2.01.07-85* приводятся в табл. 4.
Таблица 4. Расчетные ветровые нагрузки, действующие на профилированные настилы кровли, стен зданий и сооружений
Район строительства | I | II | III | IV | V | VI | VII |
---|---|---|---|---|---|---|---|
Расчетная ветровая нагрузка, Wp, кПа (кг/м²) | 0,32 (32) | 0,42 (42) | 0,53 (53) | 0,67 (67) | 0,84 (84) | 1,02 (102) | 1,19 (119) |
Районы строительства, указанные в табл. 4, соответствуют районам по карте распределения ветрового давления на территории России.
Значения расчетной ветровой нагрузки табл. 4 корректируются на величину коэффициента аэродинамического сопротивления ce, характеризующего особенности обтекания воздушным потоком конструкции зданий (сооружений) заданной формы.
Таблица 5. Расчетные значения коэффициента аэродинамического сопротивления
Схемы зданий, сооружений и ветровых нагрузок | Определение коэффициента аэродинамического сопротивления ce | |||||
Отдельно стоящие плоские, сплошные конструкции, а также вертикальные и отклоняющиеся от вертикальных не более чем на 15° поверхности: с наветренной стороны с подветренной стороны | ce = +0,8 | |||||
Здания с двухскатными покрытиями Схема 1 | Коэф. | α, град. | Значения ce1, ce2 при H/L, равном | |||
0,5 | 1 | ≤2 | ||||
ce1 | 20 40 80 | +0,2 +0,4 +0,8 | -0,6 -0,4 +0,3 +0,8 | -0,7 -0,7 -0,2 +0,8 | -0,8 -0,8 -0,4 +0,8 | |
ce2 | ≥60 | -0,4 | -0,4 | -0,5 | -0,8 | |
Схема 2 H – высота стены здания L – глубина здания B – ширина здания | B/L | Значения ce3 при H/L, равном | ||||
≥0,5 | 1 | ≥2 | ||||
ce3 | ≥1 ≥2 | -0,4 -0,5 | -0,5 -0,6 | -0,6 -0,6 | ||
Примечание. При ветре, перпендикулярном торцу здания, для всей поверхности кровли ce = 0,7. |
Wpa = Wpce , (3)
Значения коэффициента аэродинамического сопротивления ce для различных строительных объектов приведены в табл. 5. Знак «плюс» перед коэффициентом ce в таблице означает, что давление ветра направлено на соответствующую поверхность конструкции, а знак «минус» — от поверхности конструкции.
Ветровая нагрузка всегда действует перпендикулярно поверхности элемента здания и сооружения.
Расчетные значения равномерно распределенных полезных нагрузок в соответствии со СНиП 2.01.07-85* с учетом коэффициента Yf действующие на перекрытия, приведены в табл. 6.
Таблица 6. Расчетные полезные нагрузки, действующие на перекрытия
Здания и помещения | Расчетное значение нагрузки Gполезн кПа (кг/м²) |
---|---|
Квартиры жилых зданий, детские дошкольные учреждения, дома отдыха, общежития, гостиницы и т.п. | 1,95 (195) |
Административные здания, учреждения, научные организации, классные помещения, бытовые помещения промышленных предприятий и общественных зданий | 2,4 (240) |
Кабинеты и лаборатории научных, лечебных и образовательных учреждений | 2,4 (240) |
Залы: читальные кафе, ресторанов, столовых собраний, совещаний, зрительные, концертные, спортивные | 2,4 (240) 3,6 (360) 4,8 (480) |
Чердачные помещения | 0,91 (91) |
Перекрытия на участках с возможным скоплением людей | 4,8 (480) |
Источник
Приглашаем учиться к нам в «школу строительства»
Школа строительства в виде моих лекций на ютубе.
Внимание заказчиков -постоянно действующие акции по снижению цены блоков смотреть здесь
Проект ландшафтного дизайна вашего участка можете заказать нам.
Малоэтажные проекты любой сложности с расчетом фундаментов на основании ИГИ делаем МЫ. Цены разумные.
При выборе пустотных плит перекрытия под полезную нагрузку, возникают у застройщика вопросы, а под какую полезную нагрузку подбирать перекрытие? (конечно это определяется проектом)
При малоэтажном строительстве домов или коттеджа из газоблоков Ютонг, или газоблоков грас, за основу безусловно надо брать жизнью проверенную нормативную нагрузку на перекрытия и применяемую при проектировании-это в жилых домах в среднем около 160 кг/м2, но в последнии годы довольно часто под паркет и твердые покрытия в полах применяют слоистую подстилку типа ОSB¸повышающую жесткость конструкции пола и звукоизоляцию перекрытия, а так же подвесные потолки, теплые полы,что дополнительно добавляет нагрузки на перекрытия коттеджа 40-60 кг/м2. Исходя из приведенных цифр по полезным нагрузкам надо знать, что на сегодняшний день, оптимальным надо считать полезную нормативную нагрузку на перекрытие в 200 -220 кг/м2, при условии отсутствия каких-то особенностей строительства дома из газобетонных блоков Грас и газобетонных блоков итонг. Примеры особенностей увеличения полезной нагрузки на плиты перекрытия коттеджа, это строительство бассейна, бильярдного зала, саун с бассейнами, залы для приема гостей на массовые мероприятия. Здесь уже при расчете полезных нагрузок на плиты перекрытия или монолитные перекрытия, надо руководствоваться нормативами, как при строительстве общественных зданий, кафэ, магазинов, где полезная нагрузка на перекрытие может возрасти до 400 кг/м2 и даже больше, но это уже вопрос индивидуального подхода при проектировании полезной нагрузки на перекрытия и здесь подход несколько другой при строительстве подобных объектов с высокой полезной нагрузкой на перекрытия. И проектирование полезной нагрузки на перекрытия в этом случае, как и несущих конструкций под ними, уже индивидуальны.
Исходя из этого и понимая , что сегодня на рынке представлены плиты перекрытия с расчетными нагрузками в 600, 800, 1000кг/м2, нет особой необходимости под расчетные полезные нагрузки на перекрытия, стремится брать плиты 8ой или 10ой нагрузок. Для обычного коттеджа с полезной нагрузкой на перекрытия которого не планируется установка тяжелых бильярдных столов и джакузи на 3-4м3 воды или бассейнов, спокойно можно обойтись пустотными плитами перекрытия с расчетной нагрузкой в 600 кг/м2- менее к сожалению наша промышленность сейчас их не выпускает.Пустотные плиты перекрытия изготовленные качественно на заводе, способны нести необходимую полезную нагрузку на перекрытие из пустотных плит перекрытия.
Здесь же хочу отметить, при обсуждениях довольно часто звучат сомнения о применении пустотных плит перекрытия в коттеджном строительстве, когда для строительства несущих газобетонных стен применяется газобетонные блоки Ytong, Грас, газобетонные блоки bonolit-и должен отметить, что эти сомнения совершенно не обоснованны, элементарный расчет собранных расчетных и полезных нагрузок на перекрытия из пустотных плит перекрытий с учетом опор пустотных плит перекрытия на монолитные пояса, позволяют в прочности стен коттеджей постороенных из газобетонных блоков Грас bonolit или Ytong иметь запас прочности, обеспечивающий надежную эксплуатацию построенных пенобетонных стен из газоблоков Грас, газоблоков Ytong и газоблоков Бонолит десятилетиями. Когда правильно спроектированный и построенный коттедж или дом, будет переходить от одного поколения живущих к другому, создавая этим поколениям безопасные и комфортные условия проживания. Но это возможно еще раз хочу это подчеркнуть, при условии правильного расчета полезной нагрузки на перкрытие из пустотных плит перекрытия или какого другого типа перекрытия. Ориентироватся на «чутье» -я бы не советовал.
Надо также четко понимать, что нормативные нагрузки и расчетные нагрузки на перекрытия в зависимости от условий эксплуатации, технологии строительства могут существенно отличатся, расчетные нагрузки как правило больше нормативных на величину коэффициэнта надежности. При подборе полезных нагрузок на перекрытия надо ориентироваться на нормативные нагрузки.
Анологично без сомнений, при подборе полезных нагрузок на перекрытия, пустотные плиты перекрытий можно применять в качестве перекрытий при опирании пустотных плит перекрытия на стены построенные из керамических камней Braer и Винербергер
Источник
Классификация нагрузок (схема 1).
Постоянные нагрузки
в рассматриваемом здании возникают от собственного веса несущих и ограждающих конструкций: покрытия, перекрытий, колонн, стеновых ограждений.
Кратковременными нагрузками
являются снеговая и ветровая, взятые с полным нормативным значением (п.1.8 СНиП [1]).
Длительными нагрузками
могут быть снеговая и крановая, взятые с пониженным нормативным значением согласно п.1.7 СНиП [1].
В данной работе учитываются только вертикальные нагрузки: постоянная и длительные временные (технологическая, снеговая). Для железобетонных конструкций характерно снижение прочности при воздействии длительных нагрузок, поэтому их учёт имеет существенное значение.
Что такое полезная нагрузка.
Нагрузки, связанные с эксплуатацией сооружения по его непосредственному назначению, принято называть полезными.В данном случае полезной является технологическая нагрузка.
Что означает «сбор нагрузок».
При выполнении практических расчётов конструктивных элементов часто возникает необходимость преобразования поверхностно распределённой нагрузки в линейную или сосредоточенную. Для этого необходимо «собрать нагрузку» с определённой площади, которая называется грузовой площадью
данного элемента. На рис. П-1 показано, как равномерно распределённая по площади покрытия нагрузка трансформируется в линейную нагрузку на ригель рамы и в сосредоточенную нагрузку на колонну.
Рис. П-1.
Преобразование нагрузок:
а — поверхностная равномерно распределённая нагрузка на покрытие;
б — линейная равномерно распределённая нагрузка на ригель рамы;
в — сосредоточенная нагрузка на колонну.
Чем отличаются нормативные и расчётные нагрузки.
Основными характеристиками нагрузок, указанными в Нормах проектирования [1], являются их нормативные значения
. Они приняты на основании статистической обработки опытных данных с обеспеченностью, равной 0,95
.
Под обеспеченностью
какой-либо случайной величины понимают вероятность того, что она не выйдет за пределы установленных значений. Обеспеченность 0,95
означает, что в 95 случаях из 100 величина нагрузки не будет превышать своего нормативного значения.
В расчётах используют так называемые расчётные значениянагрузок. Расчётное значение нагрузки q можно получить умножением её нормативной величины qn на коэффициент надежности по нагрузке gf.
Что учитывает коэффициент надёжности по нагрузке.
Он учитывает характер статистической изменчивости нагрузки и устанавливается в зависимости от уровня ответственности выполняемого расчёта. Наибольшей изменчивостью обладают атмосферные нагрузки (снеговая и ветровая).
В каких расчётах участвуют расчётные значения нагрузок, а в каких нормативные
В расчётах, характеризующихся высоким уровнем ответственности (например, расчёты на прочность и устойчивость) участвуют расчётные нагрузки
. Эти нагрузки иногда называют предельными
, поскольку они связаны с разрушением конструкции. Использование предельных значений практически исключает возможность действия на сооружение нагрузок, величина которых превышает принятую в расчёте. Обеспеченность предельных нагрузок составляет 0,997…0,999 (точно её определить затруднительно).
В расчётах с более низкими уровнями ответственности (например, расчёты на жесткость и выносливость) используются нормативные нагрузки
. Это так называемые эксплуатационные нагрузки
Источник