Добыча полезного ископаемого с дна океана

Добыча полезного ископаемого с дна океана thumbnail

Помимо поверхности континентов, человек в течение всей своей истории использует полезные ископаемые океана и моря.

До недавних времен главной областью эксплуатации было рыболовство, но в последние десятилетия важную роль в экономике некоторых приморских государств играет добыча нефти с морского дна в районе материковых окраин.

Человек использует соли, растворенные в морской воде. В настоящее время о запасах моря часто говорят, как о надежде человечества. Моря и океаны, покрывающие более двух третей поверхности земного шара, призваны поддержать энергетический, сырьевой и пищевой баланс увеличивающегося населения Земли. полезные ископаемые океана

Естественно, встает вопрос, реально ли это?

Что можно добыть с Мирового океана

Казалось бы само собой разумеющимся, что соль, которую употребляет человек, происходит из моря, но это не так.

Лишь третья часть поваренной соли получается путем испарения морской воды, остальная добывается на континентах или путем испарения соляного раствора — минерализованных вод, сопровождающих месторождения соли.

Итак, морская вода является химическим сырьем, но самое ценное, что из нее получают, не соль, а бром, используемый в первую очередь в фотографической промышленности, и магний. Из морской воды добывается более двух третей мирового потребления этих элементов.

добыча брома в океане

Добыча брома в океане

Морская вода содержит и ряд других соединений, находящихся в растворенном состоянии. Время от времени в СМИ можно прочесть, сколько в ней находится урана или золота. Эти цифры действительно поражают.

Однако нас ограничивает в действиях тот факт, что мы пока не располагаем достаточным количеством энергии, чтобы наладить процесс их извлечения. Но ряд процессов проводит за человека сама природа.

Добыча тяжелых металлов с морского дна

Так, например, медь, марганец, кобальт, никель нет необходимости добывать из морской воды, поскольку эти металлы выпадают и кристаллизуются на дне океанских впадин в виде марганцовых конкреций. Это – образования величиной с орех, кулак или футбольный мяч, во множестве рассыпанные по дну Тихого и Атлантического океанов и состоящие из слоев окислов железа и марганца, кристаллическая структура которых легко связывает более тяжелые металлы, как никель, кобальт и медь.

Общее содержание полезных ископаемых океана в виде металлов в марганцовых конкрециях достигает 2,5%. Поэтому исследовательские корабли составляют карты морского дна, фотографируют его с помощью подводных камер, а ученые анализируют содержание металла в этих шаровидных образованиях.полезные ископаемые моря

Выявленное содержание металлов пока невелико, а расходы по добыче сырья со дна велики. Но надежды на источники сырья имеются, хотя о юридической стороне вопроса добычи со дна моря люди договариваются с трудом.

С большим успехом проводится добыча так называемых тяжелых минералов в прибрежных областях.

Например, ученые нашли подводную гору в 300 милях от побережья Канарских островов. Гора представляет редкоземельный металл теллур.

Стоимость этого металла составляет порядка 300 долларов за кг, что будет достаточно прибыльно начать добычу с морского дна.

Вода сортирует минералы

Средневековые горняки, да и позже золотоискатели получали золото путем промывки речных наносов. Вода уносила из старательских сит более легкие силикатные минералы, а на дне оставались более тяжелые минералы. Когда посчастливилось, то и кусочки золота.

Морской прибой и сильные морские течения в ряде мест делали эту работу за человека.

Более тяжелые минералы, например, касситерит (оловянная руда), циркон (циркониевая руда), рутил (окисел титана), моназит (сложный фосфат с содержанием редкоземельных элементов) и даже алмаз высвобождаются из горных пород в процессе выветривания, а поскольку они более стойки, чем многие другие минералы (например, полевой шпат), вода уносит их в море. Там они сортируются как в старательском сите: более легкие, обычно силикатные и кварцевые материалы уносятся, а на пляже или на мелком морском дне остаются тяжелые, полезные фракции. Во многих местах в мире добываются минералы в переходных зонах от океана к материкам.

Однако полезные ископаемые океана и моря пока сложно извлечь или достать с морского дна с учетом получения прибыли. Но технологии улучшаются и, возможно, основные  источники сырья будут находиться в море.

Источник

Клаус Экер, ведущий специалист отдела конструирования насосов для горнодобывающей промышленности и морской добычи полезных ископаемых, завод KSB, Хомбург (ФРГ)

Технология добычи полезных ископаемых со дна океана открыла принципиально новую область использования погружных электронасосных агрегатов. Совершенствование этого вида насосного оборудования остается в течение 70-ти лет одним из важнейших направлений в программе развития фирмы KSB.

Наша фирма имеет большой опыт эксплуатации погружных насосов на нефтегазодобывающих платформах в открытом море (работающие на морской воде балластные насосы, насосы системы охлаждения компрессоров, пожарные насосы и т.д.). Однако применение погружных насосов KSB (с заполненным водой электродвигателем) для транспортировки марганцевых конкреций со дна Тихого океана стало серьезной проверкой их надежности при работе в экстремальных условиях. Следует заметить, что эти руды залегают вдали от берегов на глубине 5000–10000?м. О существовании океанических залежей марганцевых конкреций человечество знало уже с прошлого века, когда англо-голландская экспедиция на борту британского исследовательского судна «Челленджер» в 1873 г. подняла в неводе первые образцы руды на поверхность. Долгое время таинственные океанические минералы оставались предметом исследований и дискуссий ученых. Было установлено, что конкреции растут в течение миллионов лет (от 0.001 до 1 мм в тысячелетие), а структура их поперечного сечения имеет поразительное сходство с годовыми кольцами дерева. В составе марганцевых конкреций обнаружили также железо, медь, никель и другие металлы. Исследования, проведенные в течение Международного геофизического года (1957/58), показали, что эти рудные образования, имеющие картофелеобразную форму, покрывают обширные площади дна Тихого, Индийского и северной части Атлантического океанов. Высокое содержание в конкрециях марганца (до 30%) в то время не представляло особого интереса, так как мировая промышленность еще не испытывала недостатка в марганцевом сырье. Но другие, более ценные компоненты, такие как медь, никель, кобальт, молибден и титан, были приняты во внимание для будущего использования.

Читайте также:  Что полезного съесть на обед в офисе

Добыча полезного ископаемого с дна океана

Сегодня большинство составляющих конкреций вызывает огромный интерес металлургов. Однако если подобные анализы конкреций ученые уже имели в своем распоряжении, то технические проблемы их добычи еще предстояло решить.

Сделать продукцию экономически выгодной возможно только при достижении высокой производительности добывающего предприятия (не менее нескольких тонн руды в час). Только в 60-х годах нашего столетия оказалось возможным сформулировать практические задачи освоения подводных месторождений.

Разработка минеральных ресурсов мирового океана стала одним из важнейших и, в то же время, очень спорным вопросом на Международных конференциях по Морскому Праву, которые проводились под эгидой ООН с 1958 по 1982 год. Основная проблема будущей морской добычи была связана не столько с возможностями современной техники, сколько с вопросами финансирования. Стоимость предварительных вложений в добывающее предприятие оценивается, по меньшей мере, в миллиард долларов. Такие затраты доступны только индустриально развитым странам, при условии объединения в них нескольких крупных компаний. Например, немецкий «Союз добычи минеральных ресурсов моря» (АМР) был представлен следующими фирмами: Deutsche Schachtbau und Tiefbohrgesellschaft, Metallgesellschaft AG, Preussag AG.

Добыча полезного ископаемого с дна океана

Первым практическим достижением в промышленной добыче марганцевых конкреций с глубины 5250 метров в центральном районе Тихого океана (около Гавайских островов) стала успешная работа экспериментального судна «Sedco 445». Эта работа началась в апреле 1978 года и выполнялась совместными целенаправленными усилиями компаний SEDKO (США), INCO (Канада), DOMCO (Япония) и AMR (Германия). Только согласованная работа всех заинтересованных сторон позволила нашей фирме добиться успеха в проведении промышленного эксперимента с применением насосного оборудования для разработки океанических рудных месторождений. Фирма KSB AG получила заказ на весь объем поставки оборудования для линии транспортирования марганцевых конкреций со дна океана (трубопровод с основными транспортными насосами, струйная промывка узлов коллектора, управление коллекторным устройством с помощью погружного электродвигателя). На корабле размещалась буровая вышка, через которую проходил транспортный трубопровод диаметром 200 мм, соединяющий корабль с месторождением конкреций. Под кораблем была предусмотрена конвейерная (многоступенчатая) система гидравлического транспортирования руды. Непосредственно под буровой вышкой был расположен жесткий вертикальный трубопровод. Последняя секция транспортного трубопровода представляла собой гибкий гофрированный шланг, соединенный с коллектором. Этот шланг являлся своеобразным компенсатором при буксовании коллектора по неровному дну океана. Размещенная на корабле буровая вышка была сконструирована таким образом, чтобы движение судна не изменяло ее вертикального положения. Подвешенный к монтажной башне трубопровод (его вес составлял около 1000 т) должен был при перемещении корабля оставаться в строго зафиксированной позиции, чтобы коллектор системы находился точно над зоной добычи полезных ископаемых. Устройство, собирающее марганцевые конкреции внутри корпуса коллектора, приводилось в движение погружным электродвигателем KSB типа 10А 153/4s. Далее в транспортной линии был установлен погружной насос KSB типа UQN 294/1+8А 53/2s, который имел на выходе специальные насадки для образования сильных напорных струй. Эти струи использовались для разрыхления грунта и отделения марганцевых конкреций от донного осадочного слоя. В то время как коллектор собирал на дне конкреции, донный осадок был вовлечен в интенсивное вихревое движение. Правильность монтажа участков транспортного трубопровода на большой глубине и работа коллектора гидросистемы наблюдались на корабле с помощью подводной телекамеры. На глубине ~900 м в жестком участке трубопровода были последовательно установлены друг над другом три насоса KSB типа ВРЕ 506/6а с погружными электродвигателями типа ALBLQ 80-406 (мощность двигателя 800 кВт и напряжение сети 4000 В). Номинальная подача каждого насоса была равной 500 м3/час, а суммарный напор трех насосов составлял 265 м. Здесь необходимо напомнить, что в принципе напор насоса преодолевает только потери трения на длине 5250 м. Электронасосы имели конструкцию, позволяющую транспортировать в жидкости 5% твердого вещества (марганцевых конкреций). Из-за ограничений, которые определяются возможностями морского судна, было невозможно превышать допустимые габаритные размеры насоса и электродвигателя. Поэтому общая длина перекачивающего насоса составляла 11.3 м. Это определило выбор 10-ступенчатого секционного насоса с радиальными рабочими колесами. Наибольший внешний диаметр электронасоса при этом был равен 550 мм. Специальная гидравлическая система определяла работу насоса. Пространство между электродвигателем и байпасным кожухом формировалось в течение всего времени работы насоса. При этом минимальная скорость потока всегда превышала скорость опускания конкреций (критическую скорость). Контроль за скоростью потока осуществляли регуляторы, расположенные между трубой и электродвигателем. В порядке предупреждения каких-либо заторов (пробок) в движении конкреций и засоров насоса при ожидаемых концентрациях твердых включений был точно определен минимальный свободный проход в проточной части насоса, равный 75 мм. В результате была разработана специальная конструкция, согласующая геометрию рабочих колес и направляющих аппаратов с корпусом насоса. Силовой питающий электрокабель погружного двигателя (в бронированном исполнении), который использовался в этом проекте, был применен впервые. Электрокабель полностью защищен от воздействия морской воды. Спиральные выводы кабеля из электродвигателя и байпасного кожуха были снабжены специально разработанными для этих условий уплотнениями, которые остаются герметичными при давлении до 100 бар. Изоляция (из поливинилхлорида и полиэтилена) была предварительно испытана в специальном автоклаве под большим избыточным давлением воды. Эти испытания показали, что давление не оказывает какого-либо значительного влияния на механические и электрические свойства изоляции. Тот же результат был получен при проверке свойств материала при воздействии высокого напряжения (до 10000?В). Промышленные испытания электронасосов показали полную надежность погружных двигателей как на глубине 5250 м ниже поверхности океана, так и в экспериментальном батискафе на глубине 10000 м. Межремонтный ресурс электронасосов был равен 6–8 тыс. часов непрерывной работы, а полный срок службы составляет от одного до двух лет.

Читайте также:  Делать маску из меда эта полезна

Добыча полезного ископаемого с дна океана

Добыча полезного ископаемого с дна океана

Работа погружных насосов в гидравлической системе транспортировки марганцевых конкреций дала возможность оценить эффективность их применения для нужд металлургической промышленности. В третьем тысячелетии человечество не сможет долго обходиться без использования огромных сырьевых ресурсов океана. Проверенное на надежность насосное оборудование фирмы KSB создало условия для промышленного освоения рудных месторождений на дне мирового океана.

Журнал «Горная Промышленность» №2 1999

Источник

Ученые из Университета Дьюка (Duke University, США) призвали обратить внимание на то, как подводная добыча полезных ископаемых может отразиться на целостности экосистемы океанов. Эксперты высказали опасения, что из-за разработки подводных залежей полезных ископаемых могут пострадать редкие малоизученные виды морских обитателей, пишет издание The Verge.

Сейчас активной добычей полезных ископаемых со дна океана занимается Япония. В районе самого крупного острова японского архипелага Рюкю, Окинава, на глубине 1,5 км ниже уровня моря находится «месторождение» драгоценных металлов. Там действуют гидротермальные источники, так называемые черные курильщики, через которые в океан попадает высокоминерализованная горячая вода, содержащая частицы металлов. При контакте с холодной водой они оседают на дне океана. Глубоководная горнодобывающая промышленность страны получает на этом месторождении цинк, золото и другие металлы, которые используют в производстве смартфонов.

Гидротермальные источники были обнаружены в 1970-х гг. и с тех пор остаются объектами пристального внимания ученых. Территорию рядом с ними населяют различные живые сложные существа, о которых практически ничего не известно. Они существуют на основе хемосинтеза (организмы для построения своего тела используют неорганические вещества почвы, воды и воздуха). В восточной части Тихого океана вокруг гидротермальных источников живут огромные черви, а в юго-западной части — два уникальных вида улиток. Возле «черных курильщиков» у Антарктиды живут крабы-йети (Kiwa hirsuta), получившие свое имя из-за внешнего вида — они белые и полностью покрыты ворсинками. Это не волосы в привычном понимании, а перистые щетинки, в которых живут бактерии, очищающие воду из источников от содержащихся в них ядовитых веществ. Есть мнение, что этими же бактериями питаются крабы.

«Там встречается много странного и удивительного. Это самое близкое соприкосновение человечества с чужеродными формами жизни», — считает эколог, профессор Университета Дьюка Эндрю Талер (Аndrew David Thaler).

Добыча полезных ископаемых может поставить под угрозу существование уникальных видов живых существ, поскольку разработка предполагает измельчение породы для доставки ее на поверхность. «Иного способа нет. Что бы там ни добывалось, все живое уничтожается», — добавляет Талер.

Восстановление «черных курильщиков»

По словам эколога, «черные курильщики» умеют восстанавливаться. Так, из опыта наблюдений Талер знает, что после извержений подводных вулканов источники постепенно восстанавливаются и вновь начинают функционировать спустя примерно десятилетие. Однако, как отмечает Синди Ли ван Довер (Cindy Lee Van Dover), профессор Университета Дьюка, неизвестно, какой объем разрушений смогут выдержать отверстия гидротермальных источников во время добычи полезных ископаемых.

Кроме того, источники содержат токсичные химические вещества — свинец и мышьяк. Неизвестно, что будет с окружающим их животным миром и ближайшими прибрежными зонами, если случится авария при добыче и произойдет разлив.

Регулирование работ на дне

За тем, как ведутся подводные разработки полезных ископаемых, следит Международный орган по морскому дну (International Seabed Authority, ISA) — организация, созданная на основании Конвенции ООН по морскому праву. ISA выдала 25 контрактов странам на подводную разведку полезных ископаемых. Никаких крупных разработок пока не ведется, поскольку организация еще не выяснила до конца, как именно глубоководная добыча влияет на природу. ISA взяла на себя обязательство к 2020 г. разработать кодекс экологических нормативов разработки полезных ископаемых. Как предположило издание The Verge, к 2025 г. в океане могут появиться крупные разработки подводных месторождений.

Талер убежден, что человечество должно сделать все возможное, чтобы защитить гидротермальные источники, поскольку они могут послужить источниками уникальных знаний о планете и природе. «Странные существа живут в абсолютной темноте, среди токсичных веществ. Глубоководный мир — наше космическое пространство. Но оно полно живых существ, которые живут вопреки всему, бросая вызов нашему восприятию жизни», — говорит Талер.

Читайте также:  Свидетельство на полезную модель гк рф

Материал предоставлен проектом «+1».

Источник

Для поисков и разведки месторождений конкреций применяется комплекс методов и различных технических средств. Необходимое оборудование размещают на корабле, имеющем неограниченный район плавания. Обычно это крупное океанское судно водоизмещением не менее 1 тыс. т. Местоположение судна в зоне разновидности с берега определяют по береговым ориентирам. В открытом море координаты судна устанавливают при помощи навигационных приборов и уточняют методами спутниковой навигации. В заданном районе привязка может осуществляться также по буям или размещенным на дне излучателям, координаты которых вычислены заранее. Точное знание координат судна необходимо для нанесения на планы и карты мест отбора проб грунта, геофизических профилей, гидрологических наблюдений и т. п.

Сложность выполнения поисково-разведочных работ в океане связана со значительной удаленностью от береговых ориентиров, от баз экспедиционного обеспечения, с необходимостью дистанционного изучения дна с плавсредств и последующей интерпретацией результатов исследований по косвенным признакам. Чрезвычайно велики обследуемые территории и частота необходимых замеров, а следовательно, и расходы. Много сложностей возникает при создании приборов и оборудования для исследований глубин и дна океана в связи с большими давлениями, глубинами, непрозрачностью среды, наличием волнения и подводных течений.

Разнообразные данные об океане получены за всю вековую историю человечества моряками, исследователями, учеными методами визуальных наблюдений, замеров, специальных экспериментов и т. п. Но исследования дна океана начались сравнительно недавно, а изучение донных отложений, и особенно месторождений полезных ископаемых, ведется всего несколько десятилетий. Фундаментальные работы в этой области выполнены океанологами и морскими геологами многих стран мира.

Ученые, инженеры, техники, моряки разработали и успешно применяют многочисленные сложные приборы, оборудование и аппараты для изучения месторождений конкреций и окружающей среды, т. е. океана и подстилающих пород. Наряду с традиционными методами исследований и приборами при океанологических и геологических исследованиях донных отложений в последние годы используются: локаторы бокового обзора, автономные грунтовые приборы для бестросового отбора проб со дна океана, фототелевизионные установки, буксируемые придонные зонды для дистанционного изучения конкреций методами гамма-спектроскопического анализа и др.

Исследования, основанные на применении комплекса указанных технических средств, позволили конкретизировать и уточнить полученные ранее сведения, а также масштабы распространения полей конкреций, оконтурить наиболее перспективные участки, пригодные для проведения работ по опытной добыче конкреций. Были отобраны крупнообъемные пробы конкреций для технологических исследований и изыскания эффективных методов их металлургической переработки с целью извлечения ценных компонентов: никеля, кобальта и меди.

Подводные наблюдения, съемки, замеры, опробование производятся комплексом технических средств и аппаратурой, разрабатываемыми как за рубежом, так и в нашей стране специально для целей геологоразведки. Так, для батиметрической съемки американскими электронными фирмами созданы сканирующие сонары с боковым обзором. Такая система, буксируемая за судном на определенном расстоянии от дна (10—12 м), за счет использования стабилизатора глубины позволяет выявлять детальную картину рельефа полосой до 300 м.

Для взятия проб грунта (опробования) применяются различные грунтовые приборы: для точечного опробования — трубки и дночерпатели, для валового опробования — металлические сетчатые тралы (драги-волокуши). Трубки предназначаются для получения колонки грунта, дночерпатели — для отбора поверхностной пробы с определенной площади дна, а тралы — для сбора крупнообъемной пробы со значительной площади дна при его буксировке за судном на длинном стальном тросе.

Грунтовые трубки стали наиболее распространенным устройством при океанологических исследованиях. Они позволяли получить стратифицированную колонку ненарушенной пробы грунта, удобную для последующих детальных изучений. Эти приборы пригодны для исследований верхнего слоя осадочных отложений. Колонка грунта дает представление о характере грунта, напластованиях, распределении полезных компонентов по мощности пласта.

Простейшая прямоточная трубка — отрезок стальной трубы с наконечником из твердосплавного материала, снабженного пружинящим корончатым клапаном, препятствующим выпадению пробы при подъеме трубки на поверхность моря. На верхнем конце устройства закреплен груз весом 100—200 кг для внедрения трубки в грунт при ее сбрасывании с судна. Диаметр стандартных трубок равен 50—60 мм, длина достигает нескольких метров. Более совершенные трубки снабжают внутренними поршнями, способствующими втягиванию осадочного материала во внутрь трубки по мере ее проникновения в грунт. Максимальная длина колонок грунта в пробах, отобранных в океане, равна 12 м, колонок, полученных в рейсах э/с «Витязь» в Охотском и Беринговом морях, — более 30 м.

Сечение трубок составляет всего 0,003 м2 при диаметре 60 мм и вполне отвечает целям грунтовых исследований. Но оно не удовлетворяет требованиям разведки россыпных месторождений редких, рассеянных, радиоактивных элементов в связи с их чрезвычайно малыми содержаниями в единице объема. Мало пригодны грунтовые трубки при разведочных работах на месторождениях конкреций. Как установлено, конкреции залегают преимущественно монослоем на поверхности дна океана. Механическое увеличение диаметра трубок влечет за собой соответствующее увеличение веса устройства и дополнительные трудности в эксплуатации. Следовательно, для изучения месторождений конкреций нужны приборы, берущие грунт с поверхности дна океана.

Источник