Добыча полезных ископаемых на других планетах

Добыча полезных ископаемых на других планетах thumbnail

Разговоры о добыче полезных ископаемых на небесных телах кажутся либо абсолютной фантастикой, либо делом далекого будущего. Однако уже сегодня есть люди, которые готовы перевести эти разговоры в практическую плоскость и мало-помалу превращать фантастику в бизнес-стратегию.

В нынешнем апреле группа инвесторов совместно с несколькими ветеранами аэрокосмической области учредила новую компанию, Planetary Resources, чья задача состоит в разработке полезных ископаемых, содержащихся в астероидах. «Ставка на прорыв в научно-технической сфере подразумевает исключительный коммерческий риск», — говорит сопредседатель в правлении этого стартапа Питер Диамандис. Компания поддерживается такими первопроходцами в технической сфере, как гендиректор компании Google Ларри Пейдж, кинорежиссер и изобретатель Джеймс Кэмерон, гуру программирования из компании Microsoft Чарльз Симоний. Конечно, все эти люди не рассчитывают на быстрый возврат инвестиций. «Полеты к астероидам начнутся уже через несколько лет, — говорит другой сопредседатель Эрик Андерсон, — но мы планируем нашу деятельность в расчете на столетнюю перспективу развития этой отрасли».

Шаг 1. Анализируем перспективы

Прежде чем начать добычу полезных ископаемых в космосе, компании Planetary Resources нужно подобрать астероид, который пообещал бы при разработке хорошую экономическую отдачу. Однако астероиды — это не звезды, а небольшие темные небесные тела, которые очень трудно разглядеть через толщу земной атмосферы. Лучше всего было бы охотиться на них с помощью телескопа, подвешенного в космическом пространстве. Вот почему в штаб-квартире компании Planetary Resources, расположенной в Бельвю, штат Вашингтон, президент компании, а по совместительству и ее главный инженер Крис Левицки уже приступил к сборке телескопа серии Arkyd 100. Это будет первый космический телескоп во владении частной компании.

Что можно искать в космосе?

Воду. Хондритовый астероид (С-типа) диаметром всего 7 м может содержать в себе 100 тонн воды. Она может потребоваться для синтеза ракетного топлива или для жизнеобеспечения астронавтов.
Металлы. Металлический астероид размером 24 м может содержать 33000 тонн пригодного к использованию металла. Одной только платины в нем содержится количество, эквивалентное 50 миллионам долларов. Вот только смогут ли космические згорнодобытчики воспользоваться этими богатствами?

Космический аппарат весом всего 20 кг будет поменьше и попроще, чем любой из космических телескопов, построенных на государственные средства. Hubble, например, обошедшийся казне в полтора миллиарда долларов, имеет первичное зеркало диаметром 235 см, а зеркало телескопа Arkyd составит в диаметре всего-то 22,5 см. Hubble обладает широким полем зрения и набором инструментов, позволяющих сканировать глубины космического пространства. Arkyd нацелен на гораздо более простую задачу — поиск объектов пределах Солнечной системы. Малые размеры — большая экономия. Стоимость вывода таких аппаратов на орбиту можно радикально снизить, запуская их в качестве дополнительного груза вместе с крупными спутниками на чужих ракетах-носителях.

Planetary Resources собирается построить целый флот таких малоразмерных космических телескопов, снизив стоимость каждого как минимум до $10 млн. Такая стратегия позволяет и подстраховаться на случай отказа одного из аппаратов. «Необходимо поставить эту работу на конвейер, — говорит Левицки (ранее он в Лаборатории реактивного движения занимался темой полетов на Марс). — Неправильно было бы вложить все средства в один драгоценный аппарат, чтобы потом носиться с ним как с писаной торбой».

На этом этапе компания уже совершит первую попытку окупить свои капиталовложения, сдавая в аренду аппараты Arkyd 100. Телескопы космического базирования могут заинтересовать и астрономов, и тех ученых, которым было бы интересно исследовать земную поверхность с разрешением около 2 м на пиксель. Первый свой аппарат Planetary Resources планирует запустить уже к концу 2013 года, а какова будет стоимость аренды, руководство компании пока не решило.

При разработке космических полезных ископаемых вода будет цениться намного дороже золота. Ее ценность становится наглядной, если вспомнить, из каких элементов она состоит. Водород — то самое, что нужно для перезарядки топливных элементов, при повторном соединении водорода с кислородом мы получим весьма энергоемкое топливо. Воду намного дешевле будет находить в космосе, чем доставлять с Земли. Ведь запуск в космос каждого килограмма обойдется в десятки тысяч долларов. Компания Planetary Resources может извлекать прибыль, продавая добытую в космосе воду каким-либо государственным космическим агентствам или частным космоперевозчикам. Цена такой воды может быть ниже, чем стоимость ее доставки с Земли, и при этом такая торговля может оказаться весьма прибыльной.

Лучшими источниками H2O могут считаться астероиды из углеродистого хондрита. Как говорит Джон Льюис, заслуженный профессор Университета Аризоны и автор книги «Полезные ископаемые в небесах», упомянутые выше астероиды (их еще называют астероидами С-класса) имеют рыхлую, хрупкую структуру. «Кубик такого минерала можно раздавить, просто сжав между большим и указательным пальцами». На таком астероиде бурение не потребуется — чтобы извлечь воду, достаточно будет просто скоблить его поверхность.

Сотрудник NASA стоит перед шестью сегментами главного зеркала из космического телескопа Джеймса Уэбба. Пионеры внеземной геологоразведки станут первыми частными владельцами космических телескопов. Возможно, они даже будут сдавать их в аренду.

Шаг 2. Найти и «застолбить» участок

Космические телескопы засекли какой-то перспективный в плане разработки космический объект. Теперь у нас есть только один способ выяснить, чего стоят содержащиеся в нем ресурсы — подобраться к нему поближе.

Читайте также:  Полезно ли длительное воздержание для мужчины

Дальнейший сценарий в компании Planetary Resources представляют себе так. Целая стая роботов-разведчиков направляется в сторону обнаруженного астероида (он относится к классу «околоземных астероидов» или NEA) и облетает его со всех сторон. «Наши межпланетные зонды будут стоить во много раз меньше, чем нынешние модели, а для этого необходимо радикально изменить подход к задаче», — говорит Диамандис. Новый вид реактивного движителя, который при этом имеется в виду, агентство NASA уже дважды использовало в исследованиях глубокого космоса. Речь идет ионном двигателе, в котором поток ионизированного газа (ксенона), разгоняются в электростатическом поле. В результате формируется тяга, которая неспешно, в течение нескольких лет способна разогнать космический аппарат до приличных скоростей. Процесс довольно медленный, но к финишу скорость может превышать 300 000 км/час.

Интересующие нас астероиды будут, скорее всего, иметь в диаметре километр-полтора. Небесные тела таких размеров слишком малы, чтобы породить заметную силу притяжения. Посадка космического аппарата на такой «камень» просто невозможна. Здесь, скорее, следует говорить о «стыковке». Зонд медленно приблизится к поверхности астероида, мягко коснется цели, после чего нужно будет задействовать что-то вроде якоря. Если для этой цели использовать кошки или крючья, есть вероятность, что якорная лапа выворотит из поверхности кусок породы, а сам аппарат, ударившись, отлетит от астероида. Разумнее было бы использовать какие-то буровые устройства, которые могли бы ввинчиваться в посадочную площадку, надежно удерживая аппарат на поверхности планеты.

После этого робот может провести химический анализ породы, определить, есть ли там вода и какие-либо металлы. Результаты анализа будут переданы на Землю. Идеальным для такого экспресс-анализа можно было бы считать спектроскоп на базе лазерно-индуцированного пробоя среды (LIBS). При этой методике под воздействием лазерного луча поверхность образца испаряется, после чего соответствующие датчики могут анализировать свет, излученный плазмой, возникшей в результате испарения, и фиксировать наличие в образце тех или иных элементов. Первые аппараты, построенные на принципе LIBS, ChemCam, будут задействованы при исследовании чужих миров, когда ровер Curiosity достигнет Марса на борту отправленного NASA космического аппарата.

Астероид пойман и готов к доставке. Для дальнейшего обследования и переработки астероиды можно подтащить поближе к Земле. В своем апрельском отчете Институт космических исследований Кека, действующий при Калифорнийском технологическом институте, расписал, как можно было бы перевести один из астероидов на лунную орбиту. Такое космическое тело могло бы стать для астронавтов весьма привлекательной тренировочной площадкой. «Выполнение этой программы будет очередным шагом на пути в солнечную систему», — говорит один из руководителей проекта Луис Фридман. На иллюстрации: 1.Обмеры. Комплекс лазеров и радаров выдает информацию о размерах астероида. После этого космический аппарат развертывает свой высокопрочный сачок до нужного размера. Конструкция из надувных лап, соединенных между собой тросами, должна плотно охватить пойманный астероид.
2.Отлов жертвы. Итак, астероид пойман в сачок. Датчики, закрепленные на конструкции снаружи, позволяют убедиться, что астероид не греется и не теряет свой водный запас.
3.Доставка домой. Аппарат отправляется в долгий обратный путь к лунной орбите. Эта дорога может занять шесть лет, и только по прибытии будет начата разработка астероида.

Зонд-разведчик может также пометить выбранный астероид, закрепив на его поверхности радиомаячок. Как утверждают в руководстве компании, такой маячок нужен не только для того, чтобы облегчить в дальнейшем поиск выбранного астероида. «Установка радиомаяка может служить неким юридическим жестом, подтверждающим право владения», — говорит Диамандис.

Вопрос о претензиях частной компании на какой-либо астероид пока слабо отражен в международном законодательстве. В 1967 году был заключен Договор по космосу, а сейчас его ратифицировало более сотни государств. Уже в будущем десятилетии перед юристами встанет задача как-то зафиксировать в этом договоре права предпринимателей из частного сектора. Но, скорее всего, подтвердится известное изречение о том, что владение — 9/10 права, и простой радиопередатчик, укрепленный на астероиде, вполне сможет гарантировать права собственности той компании, что установила маячок.

Робот-прототип, разработанный в Лаборатории реактивного движения NASA, вместо опор имеет 750 стальных крючков. Они цепляются к шершавым поверхностям, не позволяя роботу в условиях слабого притяжения отцепиться от поверхности астероида и улететь в космическое пространство.

Итак, представим себе, как рой горнодобывающих роботов, цепляясь за поверхность астероида своими когтистыми лапками, с хрустом грызет насыщенный водой слой грунта, используя для этого нечто вроде хоботков. Тем временем другие аппараты пылесосят поверхность планеты, следуя по стопам добытчиков и утрамбовывая остатки их деятельности. После этого умелые машины будут упаковывать грунт, то есть реголит, в специальные герметичные контейнеры. Эти роботы будут ползать, ходить или летать, регулярно навещая «горнообогатительную фабрику», «висящую» над поверхностью астероида или просто пришвартованную к нему намертво. Там реголит разогреют, выпарят из него воду и соберут ее в баки хранилища.

Инфраструктура добычи полезных ископаемых в космосе. С 2009 по 2011 год агентство NASA с помощью своего космического телескопа WISE (Wide-field Infrared Survey Explorer) создавало сводный каталог астероидов, имеющихся в Солнечной системе.
В поясе между Марсом и Юпитером было обнаружено 100 000 ранее неизвестных астероидов. 19500 астероидов среднего размера обнаружилось неподалеку от Земли.
Зафиксировано 4700 крупных астероидов, попадающих в пределы относительной космической близости к Земле (критерием считался радиус 8 миллионов километров, и такие астероиды объявлялись потенциально опасными). В NASA считают, что в данный каталог попало только 30% из числа таких потенциально опасных астероидов.

Читайте также:  Полезная классическая музыка для детей скачать

Более сложные задачи встанут перед космическими горнодобытчиками, если они решатся на добычу металлов. Астероиды М-типа, представляющие собой просто здоровенные глыбы металла, окажутся крепким орешком для космического горнорудного предприятия. Таково мнение Гарри Максуина, геолога из Университета штата Теннесси и председателя группы исследования поверхности астероида в экспедиции Dawn, которую NASA организовало для исследования астероидов. Сама попытка закрепиться на поверхности такого небесного тела уже будет представлять собой достаточно сложную задачу. О бурении металлического массива можно забыть — как и о попытке отпилить от него кусок, чтобы забрать его на переработку. «Только подумайте, сколько на это уйдет энергии, и вы поймете, что задача не слишком-то реалистична», — говорит Максуин.

Технологии космических горнодобытчиков

Магнитные грабли. В некоторых случаях для добычи драгоценных металлов не потребуется рыть никаких шахт. Достаточно будет граблей или гребешка с магнитами на каждом зубце. Стоит пройтись такой бороной по поверхности реголита, и в условиях малой гравитации зерна драгметаллов сами прилипнут к зубьям.
Сито, действующее при слабых гравитационных силах. Вот вам повод для реверансов перед золотоискателями старой закалки. В 2009 году ученые попробовали использовать вибростол для просеивания грунта через решето, чтобы отделить частицы того размера, который является оптимальным для дальнейшей переработки. Эта система продемонстрировала работоспособность при нулевой гравитации, которую создавали полетом самолета по параболической траектории.
Якоря для швартовки к астероиду. В условиях практически нулевой гравитации приземлиться на астероид — непростая задача. Ничуть не проще в такой обстановке вести добычу ископаемых. В лаборатории реактивного движения при NASA разрабатываются сейчас механизмы для забивки в грунт астероида клиньев, ориентированных под разными углами — так они должны держаться существенно надежнее. С другой стороны, компания Honeybee Robotics занимается сейчас разработкой ввинчивающихся буров, которые должны еще надежнее крепить космические аппараты к поверхности астероида.

Правда, по расчетам Льюиса, некоторые из астероидов могут состоять из металла всего на 30%, где металлы представляют собой железо-никель-кобальтовый сплав или сплав платиновой группы. Как он говорит, «велик соблазн просто взять магнит и с его помощью извлечь крупинки металла из раздробленного реголита».

Доставка продукции

С продавцом все ясно, но кто будет покупателем? Кому потребуется товар, который космические горняки добыли с таким трудом?
Металлы платиновой группы — вот надежда на быстрое обогащение. Это один из редких видов продукции, добытой в космосе, которую рентабельно доставлять на Землю. «Эти металлы широко используются сейчас во многих распространенных современных технологических процессах», — говорит Левицки. Металлы платиновой группы просто незаменимы в автомобильных катализаторах, в производстве силикона и стекла. Они присутствуют в компьютерных жестких дисках, в автомобильных свечах, где, подавляя коррозию, они продлевают жизнь свечи до пробега в 160000 км. В медицине эти металлы незаменимы благодаря их совместимости с биологическими тканями.
Допустим, у нас есть 500-тонный астероид, в котором содержится 0,0015 процента металлов платиновой группы. Это ведь не так плохо и втрое превышает концентрацию в самых богатых месторождениях платины, известных сейчас на Земле. Как говорит Левицки, «если радикально увеличить количество доступной на Земле платины, мы станем свидетелями зарождения новых отраслей производства, которые нам трудно сейчас даже представить».
Однако большая часть веществ, добытых на астероидах, найдет своего покупателя только в весьма отдаленном будущем, когда дальние космические путешествия станут обычным занятием для обитателей Земли. Вот тогда станут необходимы внеземные перевалочные базы, где астронавты, направляясь в дальние края, смогут пополнить запасы воды и топлива. А сейчас — раз нет таких покупателей, значит, не нужны и такие предложения на рынке космических услуг.
Под таким же углом можно рассматривать и проекты, связанные с добычей обычных конструкционных металлов. Они обретут реальность только тогда, когда космические корабли и станции станут производить не на Земле, а на орбите. Разумеется, производство каких-то конструкций в условиях открытого космоса выглядит весьма привлекательно, если сознавать, что мы таким образом экономим на доставке с Земли готовых блоков, однако это направление, если понимать его как вид коммерческой деятельности, всегда будет под угрозой со стороны космических перевозчиков, которые стремятся придумать новые, более дешевые способы вывода земных товаров на орбиту.
Если наступит эпоха, когда обитатели орбитальных станций будут питаться со своих огородов, среди товаров, предлагаемых на космическом рынке появятся не только железо и сталь. Возникнет спрос на азот и аммиак, которые необходимы в космическом земледелии как удобрения. Если человечество начнет всерьез обживаться в космосе, такие отрасли производства и сегменты рынка станут вполне актуальны. Как выразился Льюис, «мы говорим о тех отраслях промышленности, которые помогут обрезать пуповину, связывающую нас с родной планетой».
Проекты компании Planetary Resources — это не просто бизнес-план. Это написанная в самых радужных красках картина, призывающая нас поддерживать дальнейшие космические исследования. Это слово в защиту самых дерзких мечтаний, которые человечество когда-нибудь сделает реальностью.

Читайте также:  Какие продукты для печени полезно или

Вполне возможно, некоторые металлические астероиды имело бы смысл целиком подтянуть поближе к Земле — хотя бы до лунной орбиты. «В них может содержаться такое количество металла, что стоит задуматься, как бы прихватить всю такую штуковину целиком», — говорит Льюис.

Статья «Космический клондайк» опубликована в журнале «Популярная механика»
(№9, Сентябрь 2012).

Источник

Запас полезных ископаемых, извлекаемых из земной коры, истощается. Для растущего населения планеты это серьезная угроза, предотвратить которую поможет освоение космических недр. Насколько оно реально и как скоро начнется, рассказывает Юлия Мильшина, ведущий эксперт Форсайт-центра ИСИЭЗ НИУ ВШЭ, одна из авторов нового трендлеттера «Будущее добычи металлов». 

1
Добыча полезных ископаемых на других планетах
Что можно добыть?

Освоение космических недр — это добыча полезных ископаемых на астероидах, планетах, кометах и других небесных телах Солнечной системы. Согласно исследованию астрофизиков из Гарварда, сегодня для добычи ископаемых пригодны 10 астероидов, сближающихся с Землей.

Космические объекты содержат железо, никель, магний, кобальт, титан, драгоценные и редкоземельные металлы (рений, иридий, платина и др.), минералы, из которых можно получать воду, кислород, водород.

2
Добыча полезных ископаемых на других планетах
Это выгодно?

Потенциальные масштабы горного дела в космосе исчисляются триллионами долларов. Например, стоимость:

Добыча полезных ископаемых на других планетах ресурсов в поясе астероидов — $700 квинтиллионов или $100 млрд на каждого жителя Земли;
Добыча полезных ископаемых на других планетах среднего платинового (богатого платиной) астероида — около $3 трлн;
Добыча полезных ископаемых на других планетах небесного тела с замороженной водой – около $5 триллионов;
Добыча полезных ископаемых на других планетах железной руды на астероиде (16) Психея, космический аппарат для изучения которого отправится в 2022 году, — $10 трлн;
Добыча полезных ископаемых на других планетах полезных ископаемых астероида UW-158, содержащего около 100 млн тонн платины, – до $5,4 трлн.

3
Добыча полезных ископаемых на других планетах
Как работать в невесомости?

4
Добыча полезных ископаемых на других планетах
И что с этим делать?

Природный материал можно доставлять для переработки на Землю, либо перерабатывать на месте. Если удастся реализовать идею по выводу объектов на околоземную орбиту с оптимальными условиями гравитации, реальностью станет организация постоянной добычи.

Для освоения внеземных недр потребуются роботизированные станции и космическая инфраструктура. Уже появляются проекты орбитальных фабрик, т.е. производства продуктов в космосе. Первым устройством для такой работы стал 3D-принтер, созданный компанией Made In Space (США).

5
Добыча полезных ископаемых на других планетах
Кто имеет право на добычу в космосе?

Основа космического международного права — Договор о космосе (подписан в 1967 году СССР, США и Великобританией, сегодня участников уже более 100). Согласно документу, небесные тела не могут быть частной или национальной собственностью. Условия добычи на них не оговариваются.

Первый закон, регулирующий такую деятельность, принят в Соединенных Штатах Америки в 2015 году (US Commercial Space Launch Competitiveness Act). Одна из его статей гласит: «Гражданин США, занимающийся коммерческой добычей ресурсов на астероиде или других космических ресурсов, имеет право на любой полученный астероидный или другой космический ресурс, в том числе право владеть, перевозить, использовать и продавать его в соответствии с действующим законодательством, включая международные обязательства США».

В Европе юридическим центром зарождающейся индустрии стал Люксембург. В 2017-м здесь вступил в силу закон, легализующий собственность компаний на извлеченные ими космические ресурсы. Чтобы действовать в правовом поле, шахтеры небесных тел должны иметь офис в этой стране и получить письменное разрешение правительства.

6
Добыча полезных ископаемых на других планетах
Кто-то уже освоил горное дело на околоземных объектах?

Пока нет. Первые компании, разрабатывающие подобные технологии, появились совсем недавно:
2009 год — ARKYD Astronautics (в 2012-м переименована в Planetary Resources);
2010 год — Moon Express;
2013 год — Deep Space Industries (DSI).

Большинство космических миссий, нацеленных на разработку полезных ископаемых в космосе сегодня, — американские, европейские, японские, китайские, индийские.

Россия в 2025 году планирует запуск автоматической межпланетной станции «Фобос-Грунт 2», предназначенной для доставки на Землю образцов грунта с Фобоса — естественного спутника Марса.

Пока развитие отечественных технологий находится на уровне «заделов»: речь идет о наличии базовых знаний, компетенций, инфраструктуры, необходимых для форсированного развития соответствующих направлений исследований.

7
Добыча полезных ископаемых на других планетах
Когда появятся внеземные шахты

Драйверами индустрии называют снижение стоимости коммерческих космических запусков за счет использования многоразовых ракет, развитие фотоники и робототехники.

Количество международных патентных заявок растет (в 2008–2017 годах – с 124 до 339), новые технологии делают возможной добычу полезных ископаемых в космосе уже в ближайшие десятилетия.

Источник