Егэ по математике полезные материалы и шпаргалки

Егэ по математике полезные материалы и шпаргалки thumbnail

Формулы, правила, свойства. Можно использовать для сдачи ЕГЭ и ОГЭ по математике.

Для начала шпаргалка в компактном виде:

шпаргалки по математике

Формулы сокращенного умножения

(а+b)2 = a2 + 2ab + b2

(а-b)2 = a2 – 2ab + b2

a2 – b2 = (a-b)(a+b)

a3 – b3 = (a-b)( a2 + ab + b2)

a3 + b3 = (a+b)( a2 – ab + b2)

(a + b)3 = a3 + 3a2b+ 3ab2+ b3

(a – b)3 = a3 – 3a2b+ 3ab2- b3

Свойства степеней

a0 = 1 (a≠0)

am/n = (a≥0, n ε N, m ε N)

a- r = 1/ a r (a>0, r ε Q)

a m · a n = a m + n

a m : a n = a m – n (a≠0)

(a m) n = a mn

(ab) n = a n b n

(a/b) n = a n/ b n

Первообразная

Если F’(x) = f(x), то F(x) – первообразная

для f(x)

Функция f(x) = Первообразная F(x)

k = kx + C

xn = xn+1/n+1  + C

1/x = ln |x| + C

ex = ex + C

ax = ax/ ln a + C

1/√x = 2√x + C

cos x = sin x + C

1/ sin2 x = – ctg x + C

1/ cos2 x = tg x + C

sin x = – cos x + C

1/ x2 = – 1/x

Геометрическая прогрессия

bn+1 = bn · q, где n ε N

q – знаменатель прогрессии

bn = b1 · qn – 1 – n-ый член прогрессии

Сумма n-ыхчленов

Sn = (b n q – b 1 )/q-1

Sn = b 1 (q n – 1 )/q-1

Модуль

|a| = a, если a≥0

-a, если a<0

Формулы cos и sin

sin (-x) = -sin x

cos (-x) = cos x

sin (x + π) = -sin x

cos (x + π) = -cos x

sin (x + 2πk) = sin x

cos (x + 2πk) = cos x

sin (x + π/2) = cos x

Объемы и поверхности тел

1. Призма, прямая или наклонная, параллелепипед V = S·h

2. Прямая призмаSБОК = p·h, p – периметр или длина окружности

3. Параллелепипед прямоугольный

V = a·b·c; P = 2(a·b + b·c + c·a)

P – полная поверхность

4. Куб: V = a3 ; P = 6 a2

5. Пирамида, правильная и неправ.

S = 1/3 S·h; S – площадь основания

6. Пирамида правильная S =1/2 p·A

A – апофема правильной пирамиды

7. Цилиндр круговой V = S·h = πr2h

8. Цилиндр круговой: SБОК = 2 πrh

9. Конус круговой: V=1/3 Sh = 1/3 πr2h

10. Конус круговой: SБОК = 1/2 pL= πrL

Тригонометрические уравнения

sin x = 0, x = πn

sin x = 1, x = π/2 + 2 πn

sin x = -1, x = – π/2 + 2 πn

cos x = 0, x = π/2 + 2 πn

cos x = 1, x = 2πn

cos x = -1, x =  π + 2 πn

Теоремы сложения

cos (x +y) = cosx ·cosy – sinx ·siny

cos (x -y) = cosx ·cosy + sinx ·siny

sin (x +y) = sinx ·cosy + cosx ·siny

sin (x -y) = sinx ·cosy – cosx ·siny

tg (x ±y) = tg x ± tg y/ 1 -+ tg x ·tg y

ctg (x ±y) = tg x -+ tg y/ 1± tg x ·tg y

sin x ± sin y = 2 cos (x±y/2)· cos (x-+y/2)

cos x ± cosy = -2 sin (x±y/2)· sin (x-+y/2)

1 + cos 2x = 2 cos2 x; cos2x = 1+cos2x/2

1 – cos 2x = 2 sin2 x; sin2x = 1- cos2x/2

6. Трапеция

a,b – основания; h – высота, c – средняя линия S = (a+b/2)·h = c·h

7. Квадрат

а – сторона, d – диагональ S = a2 = d2/2

8. Ромб

a – сторона, d1, d2 – диагонали, α – угол между ними S = d1d2/2 = a2sinα

9. Правильный шестиугольник

a – сторона S = (3√3/2)a2

10. Круг

S = (L/2) r = πr2 = πd2/4

11. Сектор

S = (πr2/360) α

Правила дифференцирования

( f (x) + g (x) )’ = f ’(x) + g’(x)

(k(f(x))’ = kf ’ (x)

(f(x) g(x))’ = f ’(x)·g(x) + f(x)·g’(x)

(f(x)/g(x))’=(f ’(x)·g(x) – f(x)·g’(x))/g2 (x)

(xn)’ = nx n-1

(tg x)’ = 1/ cos2 x

(ctg x)’ = – 1/ sin2 x

(f (kx + m))’ = kf ’(kx + m)

Уравнение касательной к графику функции

y = f ’(a) (x-a) + f(a)

Площадь S фигуры, ограниченной прямыми x=a, x=b

S =  ∫( f(x) – g(x)) dx

Формула Ньютона-Лебница

∫ab f(x) dx = F(b) – F (a)

tπ/4π/23π/4π
cos√2/2-√2/21
sin√2/21√2/2
t5π/43π/2 7π/4
cos-√2/2√2/21
sin-√2/2-1-√2/2
tπ/6 π/4π/3
tg√3/31√3
ctg√31√3/3
Читайте также:  Что полезного может дать чтение литературы

sin x = b x = (-1)n arcsin b + πn

https://5-ege.ru/shpargalki-po-matematike/

cos x = b  x = ± arcos b + 2 πn

tg x = b  x = arctg b + πn

ctg x = b  x = arcctg b + πn

Теоремасинусов: a/sin α = b/sin β = c/sin γ = 2R

Теорема косинусов: с2=a2+b2-2ab cos y

Неопределенные интегралы

∫ dx = x + C

∫ xn dx = (xn+1/n+1) + C

∫ dx/x2 = -1/x + C

∫ dx/√x = 2√x + C

∫ (kx+b) = 1/k F(kx + b)

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ dx/sin2 x = -ctg + C

∫ dx/cos2 x = tg + C

∫ x r dx = x r+1/r+1 + C

Логарифмы

1. loga a = 1

2. loga 1 = 0

3. loga (bn) = n loga b

4. log An b = 1/n loga b

5. loga b = log c b/ log c a

6. loga b = 1/ log b a

Градус304560
sin1/2√2/2√3/2
cos1√3/2√2/21/2
tg√3/31√3
tπ/6π/32π/35π/6
cos√3/21/2-1/2-√3/2
sin1/2√3/2√3/21/2
90120135150180
1√3/2√2/21/2
-1/2-√2/2-√3/2-1
-√3-1√3/3
t7π/64π/3 5π/311π/6
cos-√3/2-1/21/2√3/2
sin-1/2-√3/2-√3/2-1/2

Формулы двойного аргумента

cos 2x = cos2x – sin2 x = 2 cos2 x -1 = 1 – 2 sin2 x = 1 – tg2 x/1 + tg2 x

sin 2x = 2 sin x · cos x = 2 tg x/ 1 + tg2 x

tg 2x = 2 tg x/ 1 – tg2 x

ctg 2x = ctg 2 x – 1/ 2 ctg x

sin 3x = 3 sin x – 4 sin3 x

cos 3x = 4 cos3 x – 3 cos x

tg 3x = 3 tg x – tg3 x / 1 – 3 tg2 x

sin s cos t = (sin (s+t) + sin (s+t))/2

sin s sin t = (cos (s-t) – cos (s+t))/2

cos s cos t = (cos (s+t) + cos (s-t))/2

Формулы дифференцирования

c’ = 0                    ()’ = 1/ 2

x’ = 1                     (sin x)’ = cos x

(kx + m)’ = k         (cos x)’ = – sin x

(1/x)’ = – (1/x2)      ( ln x)’ = 1/x

(ex)’ = ex; (xn)’ = nx n-1;(log a x)’=1/x ln a

Площади плоских фигур

1. Прямоугольный треугольник

S = 1/2 a·b (a, b – катеты)

2. Равнобедренный треугольник

S = (a/2)·√ b2 – a2/4

3. Равносторонний треугольник

S = (a2/4)·√3  (a – сторона)

4. Произвольный треугольник

a,b,c – стороны, a – основание, h – высота, A,B,C – углы, лежащие против сторон; p = (a+b+c)/2

S = 1/2 a·h = 1/2 a2b sin C =

a2sinB sinC/2 sin A= √p(p-a)(p-b)(p-c)

5. Параллелограмм

a,b – стороны, α – один из углов; h – высота  S = a·h = a·b·sin α

cos (x + π/2) = -sin x

Формулы tg и ctg

tg x = sin x/ cos x; ctg x = cos x/sin x

tg(-x) = – tg x

ctg(-x) = – ctg x

tg (x + πk) = tg x

ctg (x + πk) = ctg x

tg (x ± π) = ± tg x

ctg (x ± π) = ± ctg x

tg (x + π/2) = – ctg x

ctg (x + π/2) = – tg x

sin2 x + cos2 x =1

tg x · ctg x = 1

1 + tg2 x = 1/ cos2 x

1 + ctg2 x = 1/ sin2 x

tg2 (x/2) = 1 – cos x/ 1 + cos x

cos2 (x/2) = 1 + cos x/ 2

sin2 (x/2) = 1 – cos x/ 2

11. Шар: V=4/3 πR3 = 1/6 πD3

P = 4 πR2 = πD2

12. Шаровой сегмент

V = πh2 (R-1/3h) = πh/6(h2 + 3r2)

SБОК = 2 πRh =  π(r2 + h2); P= π(2r2 + h2)

13. Шаровой слой

V = 1/6 πh3 + 1/2 π(r2 + h2)· h;

SБОК = 2 π·R·h

14. Шаровой сектор:

V = 2/3  πR2 h’ где h’ – высота сегмента, содержащего в секторе

Формула корней квадратного уравнения

(a≥0, b≥0)

(a≥0)

ax2 + bx + c = 0 (a≠0)

Если D=0, то x = -b/2a (D = b2-4ac)

Если D>0, то x1,2 = -b± /2a

Теорема Виета

x1 + x2 = -b/a

x1 · x2 = c/a

Арифметическая прогрессия

a n+1 = an + d, где n – натуральное число

d – разность прогрессии;

a n= a 1 + (n – 1)·d – формула n-го члена

Сумма n членов

Sn = ((a 1 + a n )/2) · n

Читайте также:  Настойка из ирги на спирту полезные свойства

Sn = ((2a 1 + (n-1)d)/2) · n

Радиус описанной окружности около многоугольника

R = a/ 2 sin 180/n

Радиус вписанной окружности

r = a/ 2 tg 180/n

Окружность

L = 2 πR    S = πR2

Площадь конуса

S БОК = πRL

S КОН= πR(L+R)

Тангенс угла — отношение противолежащего катета к прилещащему. Котангенс – наоборот.

Скачать шпаргалки по математике

Скачать всё это в компактном виде: matematika-shpory.doc.

Рекомендуем:

Источник

Проект Карла III Ребане и хорошей компании


Раздел недели: Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость.

Техническая информация тут

Поиск на сайте DPVA

Поставщики оборудования

Полезные ссылки

О проекте

Обратная связь

Ответы на вопросы.

Оглавление

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Математика для самых маленьких. Шпаргалки. Детский сад, Школа.  / / Шпаргалки по математике, алгебре и геометрии

Поделиться:

Шпаргалки по математике, алгебре и геометрии                               Шпаргалки по физике / Шпаргалки по химии

Шпаргалки по математике, алгебре и геометрии

Таблица квадратов. Таблица степеней. Формулы сокращенного умножения. Модуль числа. Свойства модуля:Уравнения и неравенства с модулем. Последовательности и прогрессии. Метод кординат на плоскости. Скалярное произведение векторов. Расстояние между точками.Тригонометрия — основные формулы. Таблица значений тригонометрических функций. Решение тригонометрических уравнений:Четность и нечетность тригонометрических функций. Обратные тригонометрические функции. Формулы приведения. Знаки тригонометрических функций. Показательные уравнения и неравенства.
Таблица квадратов. Таблица степеней. Формулы сокращенного умножения. Модуль числа. Свойства модуля.Уравнения и неравенства с модулем. Последовательности и прогрессии. Метод кординат на плоскости. Скалярное произведение векторов. Расстояние между точками.Тригонометрия - основные формулы. Таблица значений тригонометрических функций. Решение тригонометрических уравнений. Четность и нечетность тригонометрических функций. Обратные тригонометрические функции. Формулы приведения. Знаки тригонометрических функций. Показательные уравнения и неравенства.
Корень n-ой степени. Степени. Иррациональные уравнения и неравенства. Логарифм, свойства логарифмовЛогарифмические уравнения и неравенства. Соотношения в правильных многоугольниках. Теория вероятностей. Теоремы сложения вероятностей.Логарифмические уравнения и неравенства.Производная. Правила дифференцирования. Производная сложной функции. Уравнение касательной к графику функции в точке.
Корень n-ой степени. Степени. Иррациональные уравнения и неравенства. Логарифм, свойства логарифмов.Логарифмические уравнения и неравенства. Соотношения в правильных многоугольниках. Теория вероятностей. Теоремы сложения вероятностей.Логарифмические уравнения и неравенства.Производная. Правила дифференцирования. Производная сложной функции. Уравнение касательной к графику функции в точке.
Тригонометрические формулы. Свойства функций, основные тождества, сумма углов. Сумма функций, формулы приведения, особые случаи, степени, половинные, двойные и тройные углы. Обратные функции.
Тригонометрические формулы. Свойства функций,фТригонометрические формулы. Свойства функций, основные тождества, сумма углов. Сумма функций, формулы приведения, особые случаи, степени, половинные, двойные и тройные углы. Обратные функции. основные тождества, сумма углов. Сумма функций, формулы приведения, особые случаи, степени, половинные, двойные и тройные углы. Обратыне функции.
Набор 2 — Алгебра. Линейная алгебра.
Свойства степеней. Формулы сокращенного умножения. Свойства арифметических корней. Модуль. Начала математического анализа: прогрессии арифметическая и геометрическая. Производная. Первообразная и интеграл. Среднее арифметическое и среднее геометрическое.Тригонометрия. Основные формулы. Арксинус, арккосинус,  арктангенс, арккотангенс. Четность функций. Значения тригонометрических функций некоторых углов.Графики некоторых элементарных функций.  Логарифмы. Решение квадратных, иррациональных, показательных, тригонометрических уравнений, уравнений с модулемКвадратные неравенства. Неравенства с модулем. Логарифмические неравенства. Неравенства с модулем. Иррациональные неравенства. Показательные неравенства. Комбинаторика и бином Ньютона.
Свойства степеней. Формулы сокращенного умножения. Свойства арифметических корней. Модуль. Начала математического анализа: прогрессии арифметическая и геометрическая. Производная. Первообразная и интеграл. Среднее арифметическое и среднее геометрическое.Тригонометрия. Основные формулы. Арксинус, арккосинус,  арктангенс, арккотангенс. Четность функций. Значения тригонометрических функций некоторых углов.Графики некоторых элементарных функций.  Логарифмы. Решение квадратных, иррациональных, показательных, тригонометрических уравнений, уравнений с модулемКвадратные неравенства. Неравенства с модулем. Логарифмические неравенства. Неравенства с модулем. Иррациональные неравенства. Показательные неравенства. Комбинаторика и бином Ньютона.
Определение комплексного числа. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Действия с комплексными числами. Последовательности, пределы последовательности. Теоремы о пределах числовых последовательностей.Определение предела числовой функции. Односторонние пределы. Свойства пределов. Непрерывные функции и их свойства. Точки разрыва и их классификации. Замечательные пределы. Важные пределы. Теоремы о среднем. Правило Лопиталя.Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Скалярное и векторное произведение векторов. Смешанное произведение векторов. Матрица перехода от базиса к базису. Преобразование координат вектора при  переходе к новому базису. Евклидово пространство. Длина вектора. Угол между векторами. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза.Связь между координатами одного и того же линейного оператора в разных базисах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Характеристические уравнения линейного оператора. Собственные векторы линейного оператора и их свтойства. Поверхности второго порядка. Плоскость в пространстве. Виды углов в пространстве. Уравнения плоскости.
Определение комплексного числа. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Действия с комплексными числами. Последовательности, пределы последовательности. Теоремы о пределах числовых последовательностей.Определение предела числовой функции. Односторонние пределы. Свойства пределов. Непрерывные функции и их свойства. Точки разрыва и их классификации. Замечательные пределы. Важные пределы. Теоремы о среднем. Правило Лопиталя.Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Скалярное и векторное произведение векторов. Смешанное произведение векторов. Матрица перехода от базиса к базису. Преобразование координат вектора при  переходе к новому базису. Евклидово пространство. Длина вектора. Угол между векторами. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза.Связь между координатами одного и того же линейного оператора в разных базисах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Характеристические уравнения линейного оператора. Собственные векторы линейного оператора и их свтойства. Поверхности второго порядка. Плоскость в пространстве. Виды углов в пространстве. Уравнения плоскости.
Делимость чисел. Кратное. Делитель. НОК.  НОД  Простые и составные числа. Взаимно простые числа. Числовые последовательности, члены, способы задания. Арифметическая и геометрическая прогрессии. Формулы. Характеристические свойстваЧисла. Множества натуральных, целых, рациональных, действительных, иррациональных чисел. Арифметические действия с дробями. Модуль — свойства.Решение квадратных уравнений. Формулы дискриминанта. Решение неполных квадратных уравнений. Теорема Виета. Алгоритм решения квадратного неравенства.
Делимость чисел. Кратное. Делитель. Наименьшее общее кратное (НОК). Наибольший общий делитель (НОД). Простые числа. Составные числа. Взаимно простые числа. Признаки делимости.Числовые последовательности, члены, способы задания. Арифметическая и геометрическая прогрессии. Формулы для разности и знаменателя, формулы n-ного члена. Формулы суммы n первых членов. Характеристические свойстваЧисла. Множества натуральных, целых, рациональных, действительных, иррациональных чисел. Арифметические действия с дробями. Модуль - свойства.Решение квадратных уравнений. Формулы дискриминанта. Решение неполных квадратных уравнений. Теорема Виета. Алгоритм решения квадратного неравенства.
Основные свойства функций. Понятие функции. Четность и нечетность. Периодичность. Нули функции. Промежутки знакопостоянства. Монотонность (возрастание, убывание). Асимптоты. Алгоритм описания фукнкции.

Преобразование графиков функций у= f(x) в y=-f(x); y=f(-x); y=-f(-x); y=f(x-a); y=f(x)+b; y=f(ax); y=kf(x); y=|f(x)|; y=f(|x|). Построение графика обратной функции

Основные свойства функций. Понятие функции. Четность и нечетность. Периодичность. Нули функции. Промежутки знакопостоянства. Монотонность (возрастание, убывание). Асимптоты. Алгоритм описания фукнкции.Преобразование графиков функций у= f(x) в y=-f(x); y=f(-x); y=-f(-x); y=f(x-a); y=f(x)+b; y=f(ax); y=kf(x); y=|f(x)|; y=f(|x|). Построение графика обратной функции
Квадратичная функция. Область определения / значений. Вершина графика функции. Нули. Свойства степеней. Св-ва арифметических корней.  Формулы сокращенного умножения.Показательная и логарифмическая функция. Область определения / значений. Промежутки знакопостоянства, монотонности, нули. Связь логарифмической и показательной функции. Свойства логарифмов.Решение показательных уравнений. Решение логарифмических уравнений. Примеры значений логарифмических и показательных функций.Тригонометрический функции синус и косинус. Область определения / значений. Промежутки знакопостоянства, монотонности, нули. Точки минимума и максимума. Четность, периоды.
Квадратичная функция. Область определения / значений. Вершина графика функции. Нули. Свойства степеней. Св-ва арифметических корней.  Формулы сокращенного умножения.Показательная и логарифмическая функция. Область определения / значений. Промежутки знакопостоянства, монотонности, нули. Связь логарифмической и показательной функции. Свойства логарифмов.Решение показательных уравнений. Решение логарифмических уравнений. Примеры значений логарифмических и показательных функций.Тригонометрический функции синус и косинус. Область определения / значений. Промежутки знакопостоянства, монотонности, нули. Точки минимума и максимума. Четность, периоды.

Степенные функции y=xn и y=x1/n, n∈Z. Свойства, графики. Квадратичная функция. Свойства степеней. Свойства арифметических корней. Формулы сокращенного умножения. Примеры значения степенных функций.

Обратные тригонометрические функции: arcsin x, arccos x, arctg x, arcctg x, графики, свойства, область определения и значений, асимптоты, промежутки знакопостоянства, возрастания, убывания. Простейшие тригонометрические функции — связь с обратными. Примеры значений обратных тригонометрических функций. Комбинаторика. Факториал. Перестановки. Размещения. Сочетания. Биноминальные коэффициенты. Треугольник Паскаля. Свойства биноминальных коэффициентов. Формула бинома
Степенные функции y=xn и y=x1/n, n∈Z. Свойства, графики. Квадратичная функция. Свойства степеней. Свойства арифметических корней. Формулы сокращенного умножения. Примеры значения степенных функций.Обратные тригонометрические функции: arcsin x, arccos x, arctg x, arcctg x, графики, свойства, область определения и значений, асимптоты, промежутки знакопостоянства, возрастания, убывания. Простейшие тригонометрические функции - связь с обратными. Примеры значений обратных тригонометрических функций.  Комбинаторика. Факториал. Перестановки. Размещения. Сочетания. Биноминальные коэффициенты. Треугольник Паскаля. Свойства биноминальных коэффициентов. Формула бинома

Неравенства, понятия, строгие, нестрогие, решение. Свойства неравенств. Решение линейных неравенств. Решение квадратных неравенств. Метод интервалов при решении неравенств.

Решение показательных неравенств. Решение логарифмическмх неравенств. Решение иррациональных неравенств. Решение неравенств с модулем. Часто применяемые неравенства

Неравенства, понятия, строгие, нестрогие, решение. Свойства неравенств. Решение линейных неравенств. Решение квадратных неравенств. Метод интервалов при решении неравенств.Решение показательных неравенств. Решение логарифмическмх неравенств. Решение иррациональных неравенств. Решение неравенств с модулем. Часто применяемые неравенства
Решение тригонометрических неравенств: sin x > a, sin x< a, sin x ≥ a, sin x ≤ a; cos x > a, cos x< a, cos x ≥ a, cos x ≤ a; tg x > a, tg x< a, tg x ≥ a, tg x≤a;  ctg x > a, ctg x< a, ctg x ≥ a, ctg x≤aСистемы уравнений. Понятие системы уравнений. Свойства систем уравнений. Линейные системы уравнений с двумя неизвестными. Основные методы решения систем уравнений
Решение тригонометрических неравенств: sin x > a, sin x< a, sin x ≥ a, sin x ≤ a; cos x > a, cos x< a, cos x ≥ a, cos x ≤ a; tg x > a, tg x< a, tg x ≥ a, tg x≤a;  ctg x > a, ctg x< a, ctg x ≥ a, ctg x≤aСистемы уравнений. Понятие системы уравнений. Свойства систем уравнений. Линейные системы уравнений с двумя неизвестными. Основные методы решения систем уравнений
Производная функции. Определение, вторая производная, дифференцирование, геометрический и физический смысл производной, правила дифференцирования, производная сложной функции, достаточное условие монотонности функции, необходимое и достаточное условия экстремума, производные элементарных функций.

Интегрирование функций. Понятие и основное свойство первообразной. Неопределенный интеграл. Правила интегрирования. Определенный интеграл. Формула Ньютона-Лейбница. Свойства и геометрический смысл определенного интеграла. Физический смысл определенного интеграла

Производная функции. Определение, вторая производная, дифференцирование, геометрический и физический смысл производной, правила дифференцирования, производная сложной функции, достаточное условие монотонности функции, необходимое и достаточное условия экстремума, производные элементарных функций.Интегрирование функций. Понятие и основное свойство первообразной. Неопределенный интеграл. Правила интегрирования. Определенный интеграл. Формула Ньютона-Лейбница. Свойства и геометрический смысл определенного интеграла. Физический смысл определенного интеграла
Определение комплексного числа. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Действия с комплексными числами. Последовательности, пределы последовательности. Теоремы о пределах числовых последовательностей.Определение предела числовой функции. Односторонние пределы. Свойства пределов. Непрерывные функции и их свойства. Точки разрыва и их классификации. Замечательные пределы. Важные пределы. Теоремы о среднем. Правило Лопиталя.Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Скалярное и векторное произведение векторов. Смешанное произведение векторов. Матрица перехода от базиса к базису. Преобразование координат вектора при  переходе к новому базису. Евклидово пространство. Длина вектора. Угол между векторами. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза.Связь между координатами одного и того же линейного оператора в разных базисах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Характеристические уравнения линейного оператора. Собственные векторы линейного оператора и их свтойства. Поверхности второго порядка. Плоскость в пространстве. Виды углов в пространстве. Уравнения плоскости.
Определение комплексного числа. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Показательная форма комплексного числа. Действия с комплексными числами. Последовательности, пределы последовательности. Теоремы о пределах числовых последовательностей.Определение предела числовой функции. Односторонние пределы. Свойства пределов. Непрерывные функции и их свойства. Точки разрыва и их классификации. Замечательные пределы. Важные пределы. Теоремы о среднем. Правило Лопиталя.Линейные пространства. Линейная зависимость и независимость системы векторов. Разме?</p></div><div class=