Глубина на которой залегают полезные ископаемые

Глубина на которой залегают полезные ископаемые thumbnail

Схематическая карта мест наиболее активных разработок полезных ископаемых

Добы́ча поле́зных ископа́емых — процесс извлечения твёрдых, жидких и газообразных полезных ископаемых из недр Земли с помощью технических средств[1][2]. Добыча полезных ископаемых относится к первичному сектору экономики.

Процесс добычи полезных ископаемых заключается в разработке месторождений полезных ископаемых. При разработке месторождений производится выемка полезного ископаемого и транспортировка его к местам дальнейшей переработки или полезного использования.

Термин «Добыча полезных ископаемых» используется также как экономическая категория. Как экономическая категория выражается в объёмных или весовых единицах измерения[2]:

  • в кубических метрах (м³) применительно к природному газу, нерудным строительным материалам;
  • в тоннах (т) применительно к углю, нефти, рудам, нерудному сырью;
  • в м³/сутки применительно к промышленным водам;
  • в каратах применительно к драгоценным камням;
  • в килограммах (кг) применительно к полудрагоценным камням, камнесамоцветному сырью, пьезооптическому сырью;
  • в квадратных метрах (м²) применительно к облицовочному декоративному камню.

Способы добычи полезных ископаемых[править | править код]

Добыча полезных ископаемых насчитывает многотысячелетнюю историю.
За всю историю человечество выработало различные способы добычи полезных ископаемых.

Добыча твёрдых полезных ископаемых ведётся открытым способом, подземным способом или комбинированным открыто-подземным способом. Открытым способом добывается около 90 % бурых углей, 20 % каменных углей, 70 % руд чёрных и цветных металлов.

Добыча жидких и газообразных полезных ископаемых осуществляется путём бурения с поверхности земли скважин, через которые производится их откачка в специальные хранилища.

Добыча полезных ископаемых, которые залегают непосредственно на поверхности земли (торф, нерудные строительные материалы и некоторые другие) осуществляется с поверхности при полной механизации основных производственных процессов.

Начиная с 1960-х годов, стала развиваться добыча со дна моря твёрдых полезных ископаемых (золото, олово, алмазы, циркон, монацит, ильменит и др.), а также нефти и газа.

Выбор способа добычи полезного ископаемого определяется горно-геологическими условиями залегания полезных ископаемых и обосновывается технико-экономическими расчётами.

Динамика мировой добычи важнейших видов полезных ископаемых[править | править код]

По мере развития научно-технического прогресса объёмы добычи полезных ископаемых и число их видов непрерывно увеличивались. По подсчётам академика В. И. Вернадского, выполненным в 1915 году, человечеством в античную эпоху добывалось и использовалось всего 19 элементов, в XVIII веке — 28, в XIX веке — 50, в начале XX века — 60. В настоящее время используются все 89 химических элементов, содержащихся в земной коре[3].

Постоянно увеличивались темпы роста добычи полезных ископаемых. Из всего объёма полезных ископаемых, извлечённых из недр земли за всю историю человечества, преобладающий их объём добыт в XX веке: нефти — 99,5 %, угля — 90 %, железной руды — 87 %, медной руды — 80 %, золота — 70 %. Поиск и освоение новых месторождений охватили практически всю приповерхностную часть земной коры, включая прибрежный шельф и дно Мирового океана[2][3].

При этом структура объёмов добычи различных ископаемых меняется по мере развития научно-технического прогресса. Так, например, в период с 1850-х по 1930-е годы, в общем объёме добычи доминировал каменный уголь, в период с 1940-х по 2000-е — нефть, а начиная с 2010-х — природный газ (в том числе и сланцевый). Изменяется и динамика добычи металлических руд: так, доля железной руды в общем объёме добычи непрерывно снижается с начала 1920-х годов (хотя в валовом исчислении — сохраняется и в отдельные периоды растёт), в то время как добыча руд цветных металлов увеличивается. Добыча некоторых полезных ископаемых, например торфа, сокращается в валовом исчислении начиная с 1940-х годов.

На динамику добычи некоторых полезных ископаемых влияет и возможность вторичной переработки. Например объём чёрного металлолома, накопленный в мире уже к началу 1900-х годов составил заметную часть в сырьевой составляющей металлургии, а в 2010-х годах доля металлолома в сырьевой базе превышает 40 %. По некоторым цветным металлам, например свинцу, доля лома в сырьевой составляющей ещё выше. Непрерывно растёт и доля вторичного сырья в производстве пластмасс и изделий из стекла.

Значение некоторых полезных ископаемых по мере развития технологий окончательно утрачивается. Например, в период с 1830-х по 1970-е годы в значительных объёмах добывался природный монокристаллический кварц как пьезооптическое сырьё. По мере развития технологий производства сложных оптических стёкол, пьезокерамики и выращивания искусственных кристаллов значение природного кварца для оптики и электронику утратилось: в оптике его заменили лучшие по характеристикам тяжёлые стёкла и синтетические кристаллы, а в электронике — пьезокерамики, пьезоэлектрические характеристики которых на несколько порядков лучше, чем у кварца. Поэтому в настоящее время природный кварц применяется только ювелирами. Аналогичная ситуация произошла с разновидностями корунда: с сапфиром и рубином, а также с алмазами — природные камни используются только в ювелирном деле, тогда как в технике используются синтетические. Следует отметить и тот факт, что перечисленные природные камни редкие и дорогие, тогда как их искусственное производство сравнительно дешёвый процесс, не требующий дефицитного сырья.

Примечания[править | править код]

  1. ↑ Добыча полезных ископаемых. Статья в БСЭ
  2. 1 2 3 Добыча полезных ископаемых // Горная энциклопедия / Гл. редактор Е.А. Козловский. — М.: Советская энциклопедия, 1986. — Т. 2. — С. 234-235.
  3. 1 2 [dic.academic.ru/dic.nsf/enc_tech/384/%D0%B4%D0%BE%D0%B1%D1%8B%D1%87%D0%B0 Добыча полезных ископаемых человеком]

См. также[править | править код]

  • Горное дело
  • Горная промышленность
  • Добыча рудного золота — обучающее видео

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник

Поле́зные ископа́емые — минеральные и органические образования земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере материального производства (например, в качестве сырья
или топлива). Различают твёрдые, жидкие и газообразные полезные ископаемые.

Описание[править | править код]

Полезные ископаемые находятся в земной коре в виде скоплений различного характера (жил, штоков, пластов, гнёзд, россыпей и пр.).

Скопления полезных ископаемых образуют месторождения, а при больших площадях распространения — районы, провинции и бассейны.

Научные основы добычи полезных ископаемых разрабатывают горные инженеры.

Области науки и технологии о добыче полезных ископаемых:

  • Горное дело
  • Горные науки.

Виды полезных ископаемых[править | править код]

По назначению выделяют следующие виды полезных ископаемых:

  • Горючие полезные ископаемые (нефть, природный газ, горючие сланцы, торф, уголь)
  • Руды (руды чёрных, цветных и благородных металлов)
  • Гидроминеральные (подземные минеральные и пресные воды)
  • Нерудные полезные ископаемые — строительные материалы (известняк, песок, глина и др.), строительные камни (гранит) и пр.
  • Камнесамоцветное сырьё (яшма, родонит, агат, оникс, халцедон, чароит, нефрит и др.) и драгоценные камни (алмаз, изумруд, рубин, сапфир).
  • Горнохимическое сырьё (апатит, фосфаты, минеральные соли, барит, бораты и др.)

Последние три группы совместно могут рассматриваться как нерудные (неметаллические) полезные ископаемые[1][2].

Признаки полезных ископаемых[править | править код]

Отдельными примерами поисковых признаков полезных ископаемых, без разделения на прямые и косвенные, являются:

  • Минералы — спутники рудных месторождений (для алмаза — пироп, для рудного золота — кварц и пирит, для платины нижнетагильского типа — хромистый железняк и пр.)
  • Их присутствие в перенесённых обломках, валунах и т. п., попадающихся на склонах, в ложбинах, руслах водотоков и пр.
  • Прямое наличие в горных обнажениях, выработках, керне
  • Повышенное содержание их элементов-индикаторов в минеральных источниках
  • Повышенное содержание их элементов-индикаторов в растительности

При разведке найденного месторождения закладывают шурфы, проходят канавы, разрезы, бурят скважины и др.

См. также[править | править код]

  • Полезные ископаемые России
  • Разубоживание
  • Месторождение

Примечания[править | править код]

  1. ↑ Нерудные полезные ископаемые // Моршин — Никиш. — М. : Советская энциклопедия, 1974. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 17).
  2. Под редакцией Е. А. Козловского. Неметаллические полезные ископаемые // Горная энциклопедия. — М.: Советская энциклопедия (рус.). — 1984—1991. — статья из Горной энциклопедии. — М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984—1991.

Литература[править | править код]

  • Смирнов B. И. Геология полезных ископаемых. — М.: Недра, 4-е изд., 1982. — 668 с.
  • Смирнов В. И. Геологические основы поисков и разведок рудных месторождений. — М.: Изд-во Московского университета, 1954.
  • Милютин А. Г. Геология и разведка месторождений полезных ископаемых: Учебн. пособие для вузов. — М.: Недра, 1989. — 296 с.
  • Игнатов П. А., Старостин В. И. Геология полезных ископаемых. — М.: МГУ, 1997. — 304 с.
  • Романович И. Ф., Кравцов А. И., Филиппов Д. П. Полезные ископаемые. — М.: Недра, 1982. — 384 с.

Источник

Сегодня сырьевого снабжения требуют даже те технологии, которые должны сократить нефтяную зависимость и свести к минимуму выбросы в окружающую среду, начиная от теллура для солнечных батарей, заканчивая литием для электромобилей.

Дно океана буквально устлано этими и многими другими редчайшими элементами.

Дело за малым — преодолеть тысячи метров под водой, где нет света, а температура горячих источников достигает 350 С, тем не менее, там есть удивительная жизнь.

Речь идёт о технологиях, которых человечество ещё не видело: роботы размером с двухэтажный дом, гигантские суда и насосы, способные преодолевать давление абиссальной зоны.

Что скажет океан в ответ на такое вмешательство, будет загадкой до тех пор, пока машины не коснутся дна.

В ближайшие десятки лет ресурсы полезных ископаемых на суше будут исчерпаны.

Это одна, но не единственная причина необходимости освоения минеральных ресурсов океана – считает профессор СПбГУ Георгий Черкашёв.

Более того, добываются всё более бедные руды, океан же несравнимо богат по содержанию компонентов: меди, золота, марганца и других. Чтобы извлечь со дна то же количество металла, нужно меньшее количество руды – это более выгодно с точки зрения добычных процессов.

«Один из аспектов — технологический. Раньше говорили, что нет технологий, сегодня они – и разведочные и добычные, уже имеются, так что за технологией дело не встанет.

Дело в том, что Россия и 160 стран ООН подписали Конвенцию по морскому праву. Согласно ей, в пределах международного района по морскому дну каждая страна может заявлять участки на проведение разведочных и в дальнейшем добычных работ.

Но поскольку количество этих участков в океане ограничено, нужно торопиться, чтобы занять самые интересные, перспективные с точки зрения ресурсов участки, заявить их.

Ждать нельзя, с этим нужно торопиться.

Как говорят, передел мира закончился — вот сейчас происходит передел океана, незаметно, но идёт.

Это геополитическая гонка», — рассуждает заместитель генерального директора ВНИИОкеангеология, профессор СПбГУ, член Юридической и Технической комиссии МОМД Георгий Черкашёв.

Во глубине океанских руд

Речь идёт о твёрдых минеральных ресурсах глубоководного океана – это полезные ископаемые в виде руды.

Они делятся на три принципиально разных типа, каждый из которых занимает свой уровень глубины и образует уникальные экосистемы.

Железомарганцевые конкреции образуются на океаническом ложе в 4-5 километрах от поверхности – эту часть дна океана ещё называют абиссальными равнинами.

Кобальт-марганцевые корки залегают на подводных горах, на глубине от 800 метров до 1,5-2 километров.

Полиметаллические сульфидные руды зарождаются на Срединно-океанических хребтах и в районе островных дуг, на глубине 2-3 км.

С точки зрения окружающей среды эти три вида ресурсов находятся в разных биотопах, каждый из которых представляет собой уникальную экосистему.

Например, полиметаллические сульфидные руды образуются там, где на дне бьют гидротермальные источники — чёрные курильщики.

«Месторождения, образованные чёрными курильщиками, были открыты только во второй половине ХХ века.

Они формируются на границах двух океанических литосферных плит.

Когда в мантии поток поднимается от ядра к земной коре, он, упираясь в земную кору, начинает раздвигать, расходиться в разные стороны, тем самым утягивая за собой литосферные плиты. В местах расхождения магма беспрепятственно может выходить на поверхность. На этих участках — так называемых Срединно-океанических хребтах, и формируются чёрные курильщики.

Это подводные вулканы, из жерл которых с очень большой температурой — около 300 градусов, вырывается вода чёрного цвета с большим содержанием соединений серы, называемых сульфидами.

Самый распространённый — сульфид железа, который называется пирит.

Минерал в кристалле имеет один цвет — золотой, а в порошке — другой. Именно он и окрашивает воду в чёрный цвет.

Кроме того, сера несёт с собой большое количество металлов, в том числе, тяжёлых, начиная от железа, меди и цинка, заканчивая благородными металлами: золото, серебро и другие.

То есть, это достаточно перспективные участки для разработки.

Их не так много, как железомарганцевых конкреций, однако рядом с курильщиками залегает очень богатая руда, так как формируются осадки с высоким содержанием тех или иных металлов», — рассказывает кандидат технических наук, доцент кафедры Геологии и маркшейдерского дела МИСиС Василий Ческидов.

_____

«Самые важные и интересные открытия, связанные с «чёрными курильщиками», были сделаны за последние 40 лет.

Эти открытия абсолютно поменяли наше представление об океане.

Например, мы узнали, что жизнь может развиваться без фотосинтеза — на основе хемосинтеза, то есть, энергии химических соединений, которые поступают из недр земли.

Что касается абиссальных равнин, океанического ложа — это, казалось бы, очень глубоко, далеко, и на глаз может показаться, что там жизни немного, но, на самом деле, там находится одна из самых богатых на планете экосистем с богатейшим видовым разнообразием.

По некоторым оценкам, оно сопоставимо с влажными тропическими лесами, где, как известно, самое высокое биологическое разнообразие, только на суше.

А в океане — это коралловые рифы и глубоководные экосистемы», — отмечет доктор биологических наук, руководитель Лаборатории донной фауны океана, главный научный сотрудник ИО РАН им. П.П. Ширшова Андрей Гебрук.

Что будет с океаном?

Экологический аспект — важнейшая составная часть проектов освоения глубоководных минеральных ресурсов.

Обеспечение баланса между экономической целесообразностью и экологией — основная задача Международного Органа по Морскому Дну (МОМД), который контролирует проведение разведочных, а в дальнейшем — добычных работ.

«Во всём мире в настоящее время ведется обширная работа по изучению вариантов смягчения воздействия глубоководной добычи на окружающую среду.

В США Национальное управление океанических и атмосферных исследований провело разведочные и картографические работы у побережья Гавайских островов.

Европейский союз внес миллионы долларов в такие проекты, как MIDAS (Управление воздействиями глубоководных ресурсов) и Blue Mining, международный консорциум из 19 отраслевых и исследовательских организаций», — сообщает издание The Guardian.

Специалисты из области геологии утверждают, что, учитывая локальные размеры потенциальных месторождений — в особенности это касается сульфидных руд с размерами рудных полей в первые сотни метров, воздействие на окружающую среду будет иметь локальный характер.

«Ущерб будет очень небольшим прежде всего из-за эффекта масштаба.

Участки отработки на дне несоизмеримо малы по сравнению с общими размерами дна Мирового океана.

Например, площадь нашего пилотного проекта Solwara 1 составляет всего 59 квадратных километров», — убедительно сказал в интервью журналу «Редкие земли» вице-президент канадской компании Nautilus Minerals Джон Парианос.

Однако экологи во всём мире всерьёз обеспокоены: они опасаются, что вмешательство представляет потенциальную опасность из-за светового и шумового загрязнения. Океанское дно играет важную роль в биосфере Земли: регулирует глобальные температуры, хранит углерод и обеспечивает среду обитания для огромного множества живых существ.

Промышленность развивается быстрее, чем наука. Поэтому учёные настаивают на том, что прежде, чем начинать какую-либо промышленную активность, нужно лучше изучить глубоководный мир, о котором мы крайне мало знаем.

«Жизнь на земле зависит от океана, он производит и существенную долю кислорода на планете, и огромную биологическую продукцию.

Если это всё нарушить, последствия будут непредсказуемыми.

И это будет посерьёзнее, чем любые карьерные разработки на суше или даже давно ведущийся промысел на шельфе.

Там всё ближе и понятней, поэтому легче контролировать.

Мы видим, что там происходит.

Мы знаем про катастрофы, которые там случаются и их последствия.

И мы знаем, что эти системы хоть и за долгие годы, но восстанавливаются.

А вот что произойдёт на большой глубине, не знает никто, поэтому вторгаться в систему, которую мы ещё не изучили и не поняли — смертельно опасно для человечества.

Может быть, звучит очень пафосно, но это правда: последствия могут быть совершенно катастрофические и непоправимые», — предполагает Андрей Викторович.

Казалось бы, прогнозы неутешительные. Однако сегодня есть проекты для разработки чёрных курильщиков, которые уже потухли.

Как только там прекращается гидротермальная деятельность, вся экосистема быстро гибнет — исчезает источник питания для микроорганизмов — основы пищевой цепи.

Пока есть большие основания считать, что человечество всё же начнёт хозяйствовать в глубина океана.

Как скоро процесс из этапа разведки перейдёт к этапу добычи?

«Это будет ясно после проведения первых испытаний, которые запланированы на ближайшие годы.

МОМД выпускает правила, но сегодня существуют только правила по разведочным работам.

А по добычным работам правила ещё не утверждены и находятся пока на стадии подготовки.

Ожидается, что к 2021 году они будут приняты. До этого момента никакой добычной активности в Международном районе морского дна точно не будет.

Однако в рамках разведочных контрактов все контракторы обязаны приступить к испытаниям своей добычной техники.

Можно сказать, какие-то элементы в виде испытаний уже начинаются. В частности, немецкие и бельгийские контракторы уже в следующем году пойдут в Тихий океан и будут испытывать элементы своих добычных систем.

Также компания Nautilus Minerals имеет добычной комплекс стоимостью 0,5 млрд. У них в планах — к концу 2019 года начать добычные работы.

Но они будут проводиться не в Международном районе морского дна, а в экономической зоне островного государства Папуа Новая Гвинея, а это другой юридический статус, и к той деятельности МОМД отношения не имеет», — отмечает г-н Черкашёв.

За время разведки учёным удалось выявить зону, максимально отвечающую основным требованиям эффективной разработки конкреций.

Она расположена в Тихом океане между 6 и 20° с.ш. и примерно 180 и 120° з.д. и занимает площадь около 6 млн. км2.

По предварительным расчётам, менее половины «живущих» там конкреций могут дать 85 млн. тонн никеля, 65 млн. тонн меди и 1700 млн. тонн марганца.

«В Тихом океане два огромных участка, а том числе, участок Кларион-Клиппертон, на площади которого развёрнут достаточно крупный проект, который возник достаточно давно.

Туда входят Россия, Китай, Южная Корея и другие государства, которые как раз занимаются разработкой технологии изучения этих месторождений и технологией, как их добывать.

Ряд стран имеют определённые успехи. Но сегодня ни одно государство не приблизилось к созданию этой технологии. Глубина более четрёх километров

. В России был опыт добычи железомарганцевых конкреций — не с таких глубин.

Этот проект возник где-то в 2007 году, разрабатывали в Финском заливе в Санкт-Петербурге. Но, к сожалению, этот проект сегодня свернули из-за нерентабельности.

Дорого, самые большие затраты приходятся на подъём.

Разрыхлить, собрать — проблема решённая. А вот поднять — остаётся задачей», — рассуждает Василий Ческидов.

Перспективы глубоководной добычи

Среди преимуществ добычи полезных ископаемых со дна океана называют отсутствие необходимости строительства карьеров, шахт и инфраструктуры в целом, потому что на суше месторождения локализованы не на поверхности, а в недрах на разной глубине, океанские же руды залегают непосредственно на поверхности дна.

Сегодня зарубежные и отечественные учёные обнаружили в Мировом океане около 50 районов развития глубоководных полиметаллических сульфидных руд.

В разведке участвуют учёные и технологи из Южной Кореи, Индии, Германии, России, Франции, Китая и Польши.

Особый интерес представляет область добычи полиметаллических конкреций.

Здесь самая высокая конкуренция, например, бельгийская компания DEME имеет самую передовую технологию добычи.

Все работы будут роботизированы.

В добыче будут задействованы многолучевые эхолоты, буксируемые и автономные аппараты, глубоководные буровые установки и прочее.

По словам экспертов, главная причина, по которой добыча ещё не началась — пока это весьма и весьма дорого. Поэтому добычная система должна быть задействована на долгосрочные контракты на объектах с высокими ресурсными показателями. Она должна обслуживать нескольких контракторов для удешевления добычных операций.

Также компаниям нужно стремиться к созданию менее дорогих технологий добычи и переработки сырья.

Участие России

«Разведочные работы проводятся по трём контрактам с МОМД.

Два из них — на работы по КМК (Тихий океан) и ГПС (Атлантика) подписаны Минприроды РФ, ещё один на ЖМК (Тихий океан) — АО Южморгеология.

Непосредственно геологоразведочные работы проводят 2 организации: АО Южморгеология (ЖМК, КМК) и АО ПМГРЭ (ГПС). Институт ВНИИОкеангеология обеспечивает научно-методическое сопровождение ГРР. По всему океану существует 30 контрактов, 3 из которых принадлежат России», — объясняет г-н Черкашёв.

Зона особых интересов России охватывает Магеллановы горы. Там сосредоточено 1,83 млрд тонн руды кобальто-марганцевых корок, содержащих 9,9 млн тонн кобальта и 380 млн тонн марганца.

«Фактически на сегодняшний день в России нет ни одного крупного месторождения марганца на суше, которое мы могли бы разрабатывать.

Есть отдельные небольшие месторождения, но это экономически нецелесообразно.

Стратегический для России марганец является дефицитным.

Поэтому Россия одна из первых включилась в решение проблем создания технологий по добыче железомарганцевых конкреций и кобальтсодержащих корок.

Кроме того, государства постоянно конкурируют между собой.

Если какая-то из стран научится быстро и дёшево добывать полезные ископаемые на огромной территории в Тихом океане, она станет лидером.

И чтобы лидера далеко не отпускать, все эти страны вынуждены идти в ногу со всеми, быть в тренде», — говорит Василий Ческидов.

Справка:

Посредине всех океанов проходит огромная океаническая трещина. В этих частях происходит расширение океанического дна.

Жёсткие океанические плиты, пластины толщиной около 5-7 километров, накрывающие вязкий пластичный материал мантии, раздвигаются, и через трещины поступают на поверхность мантийные расплавы материалы с глубин примерно 6-8 километров.

При этом образуется так называемая рифтовая система с характерной рифтовой долиной.

Это напоминает горную долину, в которой движущийся ледник выпахал террасы, спрямил русло, выработал полого-вогнутое дно и крутые склоны к нему. Края долины приподняты, в середине – впадина, на отдельных участках ширина составляет до нескольких десятков километров. Как змея она извивается через все океаны.

Эти структуры — часть системы Срединно-океанических хребтов. На всех картах — космических или топографических — видна приподнятая часть, борта впадин, они находятся на глубине порядка двух километров.

Дно Срединно-океанического хребта внутри трога (рифтовой долины, от немецкого «trog» — корыто) достигает глубины трёх-четырёх километров.

В некоторых участках этого хребта — отдельные сектора, где извергаются вулканы и происходят землетрясения.

Но самое главное, там развиты флюидные системы, где выходят газ и вода под высоким давлением, которые содержат в распылённом состоянии в виде коллоидной смеси частички окислов железа, марганца, сульфиды меди, цинка, никеля.

Они называются «чёрные курильщики», так как образуют под водой подобие чёрного дыма.

Постепенно вокруг такого источника наращиваются минеральные стенки, могут возникать и фигуры в виде столбов, поднимаясь на высоту до 20 метров. А потом этот «курильщик» в виде твёрдого минерального скелета падает на дно рудного поля.

На расстоянии десятков метров от дна дым сливается в сплошное чёрное облако. Когда аппарат проходит в этих непрозрачных из-за тонкой взвеси водах, даже луч прожектора их не пробивает. При этом на дне выделяется белый искрящийся минерал ангидрид, который покрывает чёрные базальты.

На глубине около 3 километров, в районе «курильщиков», где предельно высокая температура, кипит бурная жизнь: ползут крабы, видны мириады креветок.

Стоит «курильщику» исчезнуть, всё погибает.

Удивительно, но здешняя жизнь зависит не от энергии солнца, а от гидротермальной энергии.

В каждом рейсе биологи открывают новые виды животных.

Источник