Из каких полезных ископаемых делают пластмассу
Сложность статьи
НАИБОЛЕЕ ВАЖНЫЕ ПЛАСТМАССЫ
Определение
Пластмассами (пластические массы или пластики) называют материалы, изготовляемые на основе полимеров, способные приобретать при нагревании заданную форму и сохранять ее после охлаждения.
Как правило, пластмасса — это смесь нескольких веществ, полимер является составляющей частью пластмасс. Именно он связывает все компоненты пластмассы в единое, более или менее однородное целое. Поэтому полимер называют связующим. Кроме связующего полимера в пластмассы добавляют присадки разного назначения: наполнители, красители, вещества, улучшающие механические свойства, термостойкость и устойчивость к старению.Первые пластмассы получали на основе природных полимеров — производных целлюлозы, каучука и т. д. Потом в качестве связующих стали применять и синтетические полимеры — фенолформальдегидные смолы, полиэфиры и т. д.
Полиэтилен $(-CH_2-CH_2-)_n$ – продукт полимеризации бесцветного газа – этилена. Полиэтилен – один из самых легких материалов – имеет высокую эластичность, отличные электроизоляционные свойства, химически стоек, водонепроницаем, морозостоек до –$70^circ C$, пластичен, недорог, технологичен. Недостатки – склонность к старению и невысокая теплостойкость (до +$70^circ C$). Для защиты от старения в полиэтилен вводятся стабилизаторы (2-3% сажи). Используется для изготовления пленки, изоляции проводов, изготовления коррозионно-стойких труб, уплотнительных деталей. Применяется для покрытия металлов с целью защиты их от коррозии. Занимает первое место в общем объеме мирового производства пластмасс.
Полипропилен (-$CH_2-CH(СН_3)-)_n$ производится из пропилена. По свойствам аналогичен полиэтилену, но более теплостоек (до +$150^circ C$), имеет более высокую прочность, меньше склонен к старению. Применяется для изготовления деталей в автомобилестроении, химическом машиностроении, пленки, волокон, труб для горячей воды, электроизоляционных деталей
Полистирол (-$CH_2-CH(C_6H_5)-)_n$ – продукт полимеризации стирола, твердый, жесткий, прозрачный полимер. Имеет очень хорошие электроизоляционные свойства. Химически стоек, водостоек, хорошо обрабатывается механически, более стоек к воздействию радиации по сравнению с другими термопластами. Его недостатки – низкая теплостойкость (до +$65^circ C$), склонность к старению и растрескиванию. Используется в электротехнической, радиотехнической и химической промышленности. Разновидностью полистирола является пенополистирол (вспененный полистирол или пенопласт), который используется для производства теплоизоляционных и звукоизолирующих строительных материалов, одноразовой посуды, обеспечивающей теплоизоляцию.
Фторопласты – производные этилена, в которых все атомы водорода заменены атомами атомами фтора, имеют наибольшую термическую и химическую стойкость из всех термопластичных полимеров. Фторопласт-4 $(-CF_2-CF_2-)_n$, называемый также тетрафторэтилен или тефлон, имеет высокую плотность (2,2 $textrm{г/см$^3$}$), водостоек, не горит, не растворяется в обычных растворителях, обладает электроизоляционными и антифрикционными свойствами (имеют низкий коэффициент трения). По химической стойкости превосходит все известные материалы. Выдерживает температуру от −269 до +$260^circ C$. Существенным недостатком является трудность переработки в изделия и опасность выделения высокотоксичных веществ при термической утилизации. Применяется для изготовления изделий, работающих в агрессивных средах, при высокой температуре, для антифрикционных покрытий на металлах, прокладок, электроизоляции, а также посуды с антипригарным покрытием.
Полиуретаны — высокомолекулярные соединения, содержащие уретановую группу -$NH-COO$-. По свойствам они близки к полиамидам, но обладают более высокой стойкостью к действию воды и окислителей, а также превосходят их по диэлектрическим свойствам. Они характеризуются эластичностью, морозостойкостью до –$70^circ C$, применяются для изготовления пленок, волокон, изоляции, полиуретановых каучуков, элементов декора, матрасов, обуви и т.д. Полиуретановая пена широко используется для теплоизоляции зданий.
МЕТОДЫ ПОЛУЧЕНИЯ ПЛАСТМАСС
Основные способы получения пластмасс — реакции полимеризации и поликонденсации (Смотри «Высокомолекулярные соединения»).
Реакции полимеризации:
Реакция полимеризации — это химический процесс соединения (сшивание) множества исходных молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы ) полимера.
полистирол
Определение
Полистирол — продукт полимеризации стирола (винилбензола) относится к классу термопластов, отвечает химической формуле: $[-CH_2-CH(C_6H_5)-]_n-$.
Фенильные группы препятствуют упорядоченному расположению макромолекул и формированию кристаллических образований. Это жёсткий, хрупкий, аморфный полимер с высокой степенью оптического светопропускания, невысокой механической прочностью, выпускается в виде прозрачных гранул цилиндрической формы. Полистирол имеет низкую плотность (1060 кг/м3) и термическую стойкость (до $105^0C$). Полистирол обладает отличными диэлектрическими свойствами и неплохой морозостойкостью (до -40°C). Имеет невысокую химическую стойкость (кроме разбавленных кислот, спиртов и щелочей). Для улучшения свойств полистирола его модифицируют путём смешивания с другими различными полимерами — подвергают сшиванию, таким образом получая сополимеры стирола. Наиболее широкое применение (более 60% производства полистирольных пластиков) получили ударопрочные полистиролы, представляющие собой сополимеры стирола с бутадиеновым и бутадиен-стирольным каучуком.
Полистирол получают разными методами: эмульсионным, суспензионным и некоторыми другими. Эмульсионный метод в настоящее время не применяется в производстве. Поэтому рассмотрим подробнее суспензионный метод получения полистирола.
Суспензионный метод полимеризации производится в реакторах с мешалкой и теплоотводящей рубашкой. На первой стадии из стирола и воды готовят суспензию с добавлением стабилизаторов (поливинилового спирта, полиметакрилата натрия, гидроокиси магния) и инициаторов полимеризации (пероксид водорода или персульфат калия), для получения сополимеров добавляют реагенты-мономеры: акрилонитрил, метилметакрилат, бутадиен и др.
1 — аппарат для приготовления мономерной фазы; 2 — реактор; 3 — аппарат для приготовления водной фазы; 4 — сито; 5 — промежуточный сборник; 6 — центрифуга; 7 — сушилка
Процесс полимеризации проводится при постепенном повышении температуры (до $130^0C$) под давлением. Результатом является — получение суспензии из которой полистирол выделяют путём центрифугирования, затем его промывают и сушат. Данный метод получения полистирола также является устаревшим и наиболее пригоден для получения сополимеров стирола. Данный метод в основном применяется в производстве пенополистирола.
ПОЛУЧЕНИЕ ПОЛИВИНИЛХЛОРИДА (ПОЛИХЛОРВИНИЛА)
Определение
Поливинилхлорид (ПВХ) $[—(CH_2—CHCl—)]_n$ — аморфный полимер линейного строения, в исходном состоянии является жестким материалом.
Это бесцветная, прозрачная термопластичная пластмасса. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе и обладает малой морозостойкостью (−$15^0C$C).
При добавке к нему пластификатора можно получить очень пластичный материал — пластикат. Из жесткого ПВХ — винипласта — изготавливают листы, трубы, прутки, а из пластиката — пленку, шланги и другие изделия. Из ПВХ изготавливаются также вспененные материалы (пенопласты).
Поливинилхлорид получают из хлорэтилена (винилхлорида) реакцией полимеризации:
Реакция протекает по механизму свободнорадикального присоединения. Степень полимеризация и степень кристаллизации в значительной мере зависят от температуры процесса.
Одним из способов промышленного получения поливинилхлорида является суспензионный метод.
Винилхлорид, содержащий инициаторы процесса (например, ацилпероксиды, диазосоединения), интенсивно перемешивают в водной среде с добавлением защитного коллоида (например, поливинилового спирта). Смесь нагревают до $45-65^0C$ (в зависимости от требуемой молекулярной массы поливинилхлорида). Поливинилхлорид образуется в виде капель, которые застывают при охлаждении. После падения давления в реакторе удаляют непрореагировавший мономер, поливинилхлорид отфильтровывают, сушат в токе горячего воздуха, просеивают через сита и расфасовывают. Полимеризацию проводят в реакторах большого объема (до 200 куб м). Современные производства полностью автоматизированы.
РЕАКЦИИ ПОЛИКОНДЕНСАЦИИ:
Определение
Поликонденсация — синтез полимеров, протекающий за счет взаимодействия би- или полифункциональных мономеров и(или) олигомеров, и сопровождающийся выделением низкомолекулярного продукта (воды, спирта, аммиака, галогеноводорода и др.
ПОЛУЧЕНИЕ ФЕНОЛФОРМАЛЬДЕГИДНЫХ СМОЛ
Определение
Фенолформальдегидные смолы $[-C_6H_3(OH)-CH_2-]_n$ – являются продуктами поликонденсации фенола $C_6H_5OH$ и формальдегида $CH_2O$.
Взаимодействие фенола с формальдегидом протекает по следующей схеме:
Роль реакционноспособных функциональных групп в этих соединениях играют:
в феноле – бензольное кольцо с локализацией отрицательного зарядов в орто- и пара-положениях (легче идет замещение в двух орто-положениях);
в формальдегиде – карбонильная группа С=О, способная к реакции присоединению.
Это определяет возможность образования цепных макромолекул. Реакция проводится в присутствии кислых (соляная, серная, щавелевая и другие кислоты) или щелочных катализаторов (аммиак, гидроксид натрия, гидроксид бария).
Фенолоформальдегидные полимеры применяются в виде прессовочных композиций с различными наполнителями, а также в производстве лаков и клея.
ПОЛУЧЕНИЕ ЭПОКСИДНЫХ ПОЛИМЕРОВ
Определение
Эпоксидные полимеры – это простые полиэфиры. Рассмотрим пример получения эпоксидного полимера (или эпоксидной смолы) из этилхлоргидрина и бисфенола А.
Реакцию поликонденсации проводят с избытком эпихлоргидрина (хлорметилоксирана):
Вместо бисфенола могут использоваться гликоли, глицерин, резорцин и их производные.
Полученные эпоксидные смолы представляют собой высоковязкие жидкости или твердые тела с высокими температурами плавления. Эпоксидные смолы могут далее отверждаться добавками аминов, полисульфидов, полиамидов.
Эпоксидные смолы находят весьма широкое и разнообразное применение благодаря своей химической устойчивости и хорошей адгезии. Эпоксидные смолы являются конструкционными клеями. После полного отверждения эпоксидные смолы – это прочные материалы, что позволяет их использовать для покрытия полов в промышленных зданиях, в качестве герметизирующих композиций и застывающих клеев.
Источник
Пластические массы (более распространенные названия пластмассы или пластики) – это синтетические материалы, получаемые в результате серии химических превращений (синтеза) полезных ископаемых, таких как нефть, газ или уголь.
Область знаний, изучающая и описывающая химические процессы получения пластических масс из углеводородов полезных ископаемых, называется нефтехимией. Суть нефтехимических процессов заключается в разделении углеводородного сырья на отдельные компоненты, которые, в свою очередь, являются исходным сырьем для получения пластмасс. Пластмассами называется широкий класс полимерных материалов, состоящий из длинных цепочек (макромолекул), которые, в свою очередь, состоят из множества повторяющих звеньев (мономеров). Благодаря подобному химическому строению пластмассы обладают комплексом уникальных свойств, выгодно отличающих их от традиционных материалов, таких как металл, стекло, древесина.
Термопласты и реактопласты. Отличия и свойства.
В зависимости от природы макромолекул различают два вида пластмасс: реактопласты и термопласты. Основой получения реактопластов являются натуральные или синтетические смолы. Характеризуются тем, что их макромолекулярные цепи соединены между собой частыми химическими связями, образовавшимися в результате отверждения.
Термопласты же состоят из длинных молекулярных цепей, которые соединяются между собой силами межмолекулярного взаимодействия.
Отличительной особенностью термопластов является их способность к многократному плавлению, что дает возможность их вторичной переработки. К термопластам относятся такие крупнотоннажные пластики как: полиэтилен, полипропилен, поливинилхлорид, полистирол, полиэтилентерефталат и ряд других.
Термопласты используются в качестве сырья для производства множества изделий в различных отраслях экономического хозяйства. Нам уже сложно представить себе современное здание без окон из ПВХ, садовые теплицы без листа из поликарбоната или полиэтиленовой пленки, автомобиль без деталей экстерьера и интерьера на основе полипропилена, продукты питания без упаковки из различных видов пластмасс, которые несем домой в полиэтиленовых пакетах. Однако далеко не все себе отчетливо представляют как получаются пластмассы, какие виды бывают, от чего зависят свойства того или иного пластика, какие изделия и с какими характеристиками можно получить. Об этом и многом другом Вы сможете узнать на страницах нашего проекта, а о том, какие этапы химических превращений проходят горючие ископаемые перед тем, как превратится в пластмассы, расскажем в данной статье.
Этапы получения пластмасс
Получение пластмасс – это сложный, многостадийный процесс, сопровождающийся химическими реакциями, который можно условно разделить на 3 основных этапа:
1. Фракционирование горючих ископаемых углеводородов на отдельные компоненты
2. Химическое превращение компонентов ископаемых УВ в мономеры
3. Химическое превращение мономеров в полимеры, которыми, в том числе, являются и пластмассы.
Основой сырьевой базой для получения пластиков являются ископаемые углеводороды (УВ), такие как нефть, попутный нефтяной газ (ПНГ), газовый конденсат и природный газ. Как уже упоминали, исходным сырьем для получения пластмасс являются отдельные компоненты природных ископаемых, для чего их подвергают сложным многоступенчатым процессам разделения и выделения ценных компонентов для нефтехимии. Схематично процесс выделения ценных сырьевых компонентов из горючих ископаемых можно изобразить следующим образом (рис. 1).
Углеводороды добываются из недр земли нефтяными и газодобывающими компаниями. Поскольку УВ являются смесью различных веществ, то УВ направляют на дальнейшее разделение на компоненты.
1. Так, ископаемые УВ направляют на нефте- и газоперерабатывающие заводы (НПЗ и ГПЗ) где происходит первичное разделение сырья на компоненты. Основная цель заключается в разделении (фракционировании) УВ на группы составляющих их компонентов.
2. В результате нефтепереработки самой ценной фракцией для дальнейшего получения пластмасс является нафта (второе название — прямогонный бензин). Это смесь жидких УВ с длинной углеводородной цепи от С5 до С10.
Основным ценным сырьем для нефтехимии после разделения попутного нефтяного газа и природного газа на компоненты являются широкая фракция углеводородов (ШФЛУ) и этан. Поскольку ШФЛУ продолжает оставаться смесью различных газов ее подвергают дальнейшему разделению. Так получаются СУГ, которые представляют собой чистые газы или технические смеси такие как пропан-пропиленовая фракция (ППФ), бутан-бутиленовая фракция (ББФ) или смесь пропан-бутан технический (СПБТ).
Таким образом, после разделения УВ сырья на отдельные, ценные для дальнейшей переработки, компоненты нафта, ШФЛУ, СУГ и этан направляются в качестве исходного сырья в следующий передел – пиролиз.
3. Пиролиз – это важнейший процесс нефтехимии, в ходе которого получаются диеновые УВ (вещества с двойными связями в основной цепи), такие как этилен или пропилен (они же низшие алкены или олефины), крайне редко встречающиеся в свободном виде в недрах земли. Процесс проходит при высоких температурах (до 1200 ˚С) в специальных печах пиролиза. Ценным, эти вещества делают двойные связи, которые придают высокую реакционоспособность соединениям.
4. Следующим этапом процесса получения пластмасс является полимеризация. Химизм процесса заключается в формировании длинных молекулярных цепочек из повторяющихся элементарных звеньев олефинов. Как раз наличие двойных связей в низших олефинах дает возможность образования длинных макромолекулярных цепей полимера. В процессе полимеризации происходит разрыв одной двойной связи мономера, которая моментально реагирует с рядом находящимся подобным мономером, в свою очередь, который взаимодействует со следующим звеном и так далее. Подобные реакции носят название цепных реакций, в ходе которых первоначальная активная частица запускает рост и развитие всей полимерной цепочки. Физически процесс протекает в реакторе при определенной температуре, давлении и наличию каталитической системы, которая является инициатором процесса полимеризации.
5. Для большинства пластмасс заключительным этапом является гранулирование порошка, образовавшегося в ходе полимеризации, после которого гранулы пластика фасуются в мешки и/или биг-беги и складируются в ожидании отгрузки в адрес будущего покупателя.
Более подробно о каждом этапе получения пластмасс расскажем в следующих статьях, в которых будут детально описаны основы процессов получения важнейших веществ как сырья для производства пластических масс.
Designed by Freepik
Источник
Нашу цивилизацию можно назвать цивилизацией пластика: разнообразные виды пластмасс и полимерных материалов можно встретить буквально повсюду.
Однако обычный человек вряд ли хорошо представляет себе, что такое пластик и из чего его делают.
Что такое пластик?
В настоящее время пластиками, или пластмассами, называют целую группу материалов искусственного (синтетического) происхождения. Их производят путём цепочки химических реакций из органического сырья, преимущественно из природного газа и тяжёлых фракций нефти. Пластики представляют собой органические вещества с длинными полимерными молекулами, которые состоят из соединённых между собой молекул более простых веществ.
Изменяя условия полимеризации, химики получают пластики с нужными свойствами: мягкие или твёрдые, прозрачные или непрозрачные и т.д. Пластики сегодня используются буквально во всех сферах жизни, от производства компьютерной техники до ухода за маленькими детьми.
Как были изобретены пластмассы?
Первый в мире пластик был изготовлен в английском городе Бирмингем специалистом-металлургом А. Парксом. Это случилось в 1855 году: изучая свойства целлюлозы, изобретатель обработал её азотной кислотой, благодаря чему запустил процесс полимеризации, получив нитроцеллюлозу. Созданное им вещество изобретатель назвал собственным именем – паркезин. Паркс открыл собственную компанию по производству паркезина, который вскоре стали называть искусственной слоновой костью. Однако качество пластика было низким, и компания вскоре разорилась.
В дальнейшем технология была усовершенствована, и выпуск пластика продолжил Дж.У. Хайт, который назвал свой материал целлулоидом. Из него изготавливались самые разные товары, от воротничков, которые не нуждались в стирке, до бильярдных шаров.
В 1899 году был изобретён полиэтилен, и интерес к возможностям органической химии многократно вырос. Но до середины ХХ века пластики занимали довольно узкую нишу рынка, и только создание технологии производства ПВХ позволило изготавливать из них широчайший спектр бытовых и промышленных изделий.
Разновидности пластиков
В настоящее время промышленностью выпускается и используется множество разновидностей пластиков.
По своему составу пластмассы подразделяются на:
— листовые термопластические массы – оргстекло, винилпласты, состоящие из смол, пластификатора и стабилизатора;
— слоистые пластики, армированные одним или несколькими слоями бумаги, стеклоткани и т.д.;
— волокниты – пластики, армированные стекловолокном, асбестовым волокном, хлопчатобумажным и т.д.;
— литьевые массы – пластики, не имеющие в составе других компонентов, кроме полимерных соединений;
— пресс-порошки – пластики с порошкообразными добавками.
По типу полимерного связующего пластики подразделяются на:
— фенопласты, которые изготавливаются из фенолформальдегидных смол;
— аминопласты, изготавливаемые из меламинформальдегидных и мочевиноформальдегидных смол;
— эпоксипласты, использующие в качестве связующего эпоксидные смолы.
По внутренней структуре и свойствам пластики делятся на две большие группы:
— термопласты, которые при нагреве плавятся, но после охлаждения сохраняют свою первоначальную структуру;
— реактопласты, с исходной структурой линейного типа, при отверждении приобретающие сетчатую структуру, но при повторном нагреве полностью теряющие свои свойства.
Термопласты могут использоваться неоднократно, для этого их достаточно измельчить и расплавить. Реактопласты по рабочим качествам, как правило, несколько лучше термопластов, но при сильном нагреве их молекулярная структура разрушается и в дальнейшем не восстанавливается.
Из чего делают пластики?
Исходным сырьём для подавляющего большинства видов пластиков служат уголь, природный газ и нефть. Из них путём химических реакций выделяют простые (низкомолекулярные) газообразные вещества – этилен, бензол, фенол, ацетилен и др., которые затем в ходе реакций полимеризации, поликонденсации и полиприсоединения превращаются в синтетические полимеры. Превосходные свойства полимеров объясняются наличием высокомолекулярных связей с большим числом исходных (первичных) молекул.
Некоторые этапы производства полимеров представляют собой сложные и чрезвычайно опасные для окружающей среды процессы, поэтому производство пластиков становится доступным лишь на высоком технологическом уровне. При этом конечные продукты, т.е. пластмассы, как правило, абсолютно нейтральны и не оказывают никакого негативного воздействия на здоровье людей.
( 14 оценок, среднее 4.21 из 5 )
Источник