Из каких животных образуются полезные ископаемые

Из каких животных образуются полезные ископаемые thumbnail

Ископаемыми называют животных и растения геологического прошлого (см. Развитие жизни на Земле). Изучают их по остаткам и следам жизнедеятельности, сохранившимся в осадочных отложениях земной коры.

Вы можете ознакомиться с ними, совершив экскурсию по обрывистым берегам рек, сложенным известняком или песчаником, по карьерам, горам с крутыми склонами, не прикрытыми почвой Под ногами и на отвесных каменных стенах можно увидеть самые разнообразные окаменевшие раковины. Встречаются большие скопления раковин аммонитов — одной из крупных групп головоногих моллюсков, появившихся на Земле около 350 млн. лет назад и вымерших около 70 млн. лет назад. Иногда верхний слой раковины отсутствует, и хорошо сохранившийся внутренний — перламутровый — слой переливается всеми цветами радуги. Красиво переплетаются похожие на цветок скелеты своеобразных животных — морских лилий, появившихся в морях примерно 500 млн. лет назад.

Неизгладимое впечатление остается от прогулки по дну моря, существовавшего около 300 млн. лет назад. Ее можно совершить, например, на берегу реки Меты в Новгородской области. Большие плиты известняков, образовавшиеся из осадков в прибрежных частях так называемого каменноугольного моря, буквально усеяны крупными раковинами плеченогих — своеобразной группы животных, процветавших в морях далекого прошлого. В современных морях они представлены незначительным числом форм и не достигают крупных размеров.

Многим из вас знакомы так называемые «чертовы пальцы», или «громовые стрелы», которые часто можно встретить по берегам рек Оки и Волги, в Крыму, на Кавказе и в других местах. Это наиболее прочная часть раковины белемнитов — отдаленных родственников современных кальмаров.

Иногда скелет растворяется, и от него в породе остается лишь слепок, который называют ядром. Он образован минеральным веществом, принесенным водой. Особенно хорошо такие ядра образуются при растворении различных раковин. Часто от скелета остается в породе только отпечаток, по которому уже трудно судить о строении животного.

Порой даже само образование породы связано с массовым скоплением остатков вымерших организмов. Их можно увидеть под микроскопом в препарате из обыкновенного писчего мела. Известен фузулиновый известняк, образованный похожими на крошечные веретенца простейшими организмами — фузулинами, жившими более 200 млн. лет назад. В Крыму встречается нуммулитовый известняк, образованный крупными монетковидными скелетами одноклеточных организмов — нуммулитов, обитавших в теплых морях более 50 млн. лет назад. Не редкость слои известняка, сложенные скелетами вымерших кораллов, которые в морях далекого прошлого образовывали рифы, подобно их потомкам в современных морях.

Находят и скелеты морских позвоночных, например рыб, образующие иногда целые скопления. Известны остатки крупных морских пресмыкающихся — ихтиозавров, вымерших около 70 млн. лет назад.

Хорошо сохранившиеся и достаточно полные остатки наземных животных встречаются редко, так как их уничтожают хищники или же они разлагаются, а скелеты на воздухе разрушаются. От позвоночных животных обычно остаются только наиболее крупные кости, черепа, реже — другие части скелетов. Чрезвычайно редки и уникальны находки естественных слепков мозга, частей скелета с сохранившимися сухожилиями. Только в особых условиях могут сохраняться кроме скелета и мягкие ткани, конечно обезвоженные и как бы мумифицированные. В северных районах Сибири, в условиях многовековой мерзлоты, находят прекрасно сохранившиеся части животных, а иногда даже целых мамонтов и других представителей фауны ледникового периода. Интересно, что у таких мамонтов хорошо сохраняется не только шкура с шерстью, но даже внутренности и содержимое желудка, по которому можно установить, чем они питались.

Прекрасно сохраняются остатки животных в естественных асфальтоподобных массах. Здесь находят законсервированные трупы не только зверей, но и птиц. Возможно, они, принимая блестящую поверхность такой массы за озеро, садились на него и тонули в вязком асфальте.

Хорошо сохраняются насекомые, попавшие в смолу хвойных деревьев, которые росли на Земле миллионы лет назад. В этой окаменевшей смоле (янтаре) часто различимы мельчайшие детали строения насекомых.

Иногда ученые встречают лишь следы жизнедеятельности организмов: норки, отпечатки ног, остатки трапез. Эти находки многое могут рассказать специалисту об образе жизни и поведении животного. Хорошо известны следы гигантских пресмыкающихся — динозавров, господствовавших на Земле более 100 млн. лет и вымерших около 70 млн. лет назад. Некоторые из них передвигались на двух ногах и достигали в высоту 15 м.

Известны также ископаемые растения. Сохранились следы не только от высших растений, с достаточно прочными стволами и листьями, но даже и от водорослей. Многие группы водорослей способны образовывать своеобразные известковые футляры, другие имеют микроскопические панцири из кремнезема и т. д., благодаря чему хорошо сохраняются в ископаемом состоянии. Кремнеземные панцири одной из групп водорослей — диатомей образуют достаточно мощные отложения легкого материала, используемого в промышленности. Хорошо сохраняются части водорослей в образованных ими горючих сланцах.

От наземных растений до нас дошли отпечатки листьев и сами листья в виде тончайших углистых пленок, а также плоды и стволы. Они обычно встречаются в разрозненном виде, и очень нелегко восстановить из таких остатков целое растение. Особенно большое впечатление оставляют скопления огромных стволов, напоминающих колонны давно заброшенного храма или театра.

Но, пожалуй, самое удивительное — сохранение спор и пыльцы разных растений. Пыльца сохранилась в большом количестве, и благодаря ей значительно пополнились наши сведения о растительном мире прошлого.

Остатки древовидных лепидодендронов и сигиллярий, вымерших около 300 млн. лет назад, довольно часто находят в слоях каменного угля, в образовании которого они принимали участие. По обилию каменного угля один из периодов геологической истории Земли получил название каменноугольного. Не следует, однако, думать, что весь уголь на Земле образовался только в это время, процесс этот повторялся неоднократно и в разных условиях.

Не всегда отчетливо сознают неразрывную связь мира настоящего с миром прошлого. Следует помнить, что мир, в котором мы живем, — результат длительной эволюции мира прошлого и тесно с ним переплетается. Мы пользуемся богатствами, созданными природой за десятки и сотни миллионов лет: известняками, горючими сланцами, каменным углем, нефтью, также обязанной своим происхождением давно исчезнувшим организмам, и должны пользоваться ими разумно, ведь они невосполнимы.

Читать летопись Земли человек научился не сразу. По мере развития человеческого общества люди постепенно познавали окружающий мир. У них появилось стремление как-то объяснить найденные высоко в горах окаменевшие раковины, огромные бивни и кости, не похожие на кости современных животных. Объяснения были порой самыми фантастическими. Так, крупные кости животных принимали за кости великанов.

Только на рубеже XVIII и XIX вв. была установлена истинная природа всех этих остатков. Появилась палеонтология — наука о древних организмах. Современная палеонтология — комплексная наука. Она подразделяется на палеозоологию — науку об ископаемых животных, палеоботанику — науку об ископаемых растениях, палеоэкологию — науку об образе жизни и условиях существования организмов прошлого. Теперь палеонтологи не только описывают внешний вид ископаемого остатка, как делалось в прошлом веке. Они исследуют его внутреннее строение на распилах, в шлифах, протравливают в кислотах, чтобы изучить его структуру. В своей работе ученые-палеонтологи используют световой и электронный микроскопы, рентгеновские и инфракрасные лучи.

Читайте также:  Овощи и фрукты полезные продукты рисунки

Детальное изучение ископаемых остатков важно не только для выяснения истории развития органического мира Земли. Оно помогает установить последовательность образования осадочных отложений, содержащих полезные ископаемые, выяснить, как изменялся климат, восстановить картину размещения суши и морей в далеком геологическом прошлом.

Мир животных и растений сотни миллионов лет назад мало походил на современный. Было время, когда вся жизнь была сосредоточена в морях, потом организмы освоили сушу и лишь затем освоили воздушное пространство. Многие крупные группы животных и растений появились очень давно и существуют до нашего времени (например, крокодилы, черепахи, из растений — саговниковые, папоротникообразные), другие, процветавшие десятки и даже сотни миллионов лет, бесследно вымерли. К сожалению, далеко не всегда до нас доходят остатки всех вымерших организмов. Вероятно, вымерших групп было значительно больше, чем мы об этом знаем.

Непрерывная смена разных групп животных и растений, появление одних и вымирание других позволили ученым подразделить всю историю развития органического мира на несколько крупных этапов — эр (см. Развитие жизни на Земле), каждая из которых подразделяется на подэтапы — периоды, а периоды — на геологические века. Получили свои названия и отложения, возникавшие в тот или иной промежуток времени. По ископаемым остаткам ученые могут установить относительный возраст тех отложений, в которых они были найдены. Установлением возраста слоев земной коры по ископаемым остаткам организмов занимается особая наука — биостратиграфия. По этим данным составляются особые геологические карты, необходимые для поисков полезных ископаемых, на которых определенным цветом указаны отложения определенного возраста.

Источник

Полезные ископаемые – горные породы и минералы, которые используются или могут быть применены в народном хозяйстве. Подразделяются они по-разному. В одном случае подчеркивается их физическое состояние, и выделяются следующие типы:

твердые (различные руды, уголь, мрамор, гранит, соли) ;

жидкие (нефть, минеральные воды) ;

газовые (горючие газы, гелий, метан) .

В другом случае за основу берется их использование, вследствие чего выделяются ископаемые:

горючие (уголь, торф, нефть, природный газ, горючие сланцы) ;

рудные (руды горных пород, включающие металлические полезные компоненты и неметаллические (графит, асбест) ;

нерудные (неметаллические и негорючие полезные ископаемые: песок, гравий, глина, мел, известняк, различные соли. Отдельной группой стоят драгоценные и поделочные камни) .

По происхождению все полезные ископаемые делятся на магматические, осадочные и метаморфические. В их размещении по территории Земли прослеживаются определенные закономерности. В складчатых областях обычно залегают магматические полезные ископаемые. Это связано с тем, что руды образовались в основном из магмы и выделяющихся из нее горячих водных растворов. Магма поднимается из недр по разломам и застывает в толще горных пород на различной глубине. Магматические полезные ископаемые могут образовываться и из излившейся магмы — лавы, которая быстро остывает. Обычно внедрение магмы происходит в период активных тектонических движений, поэтому рудные полезные ископаемые связаны со складчатыми областями. На платформенных равнинах они приурочены к фундаменту — нижнему ярусу платформы. На платформах рудные месторождения могут быть приурочены к щитам (щит — выход фундамента платформы на поверхность) либо к тем частям платформы, где мощность осадочного чехла невелика и фундамент подходит близко к поверхности. Так расположены железные руды Курской магнитной аномалии (КМА) в России. На щитах добываются руды в Криворожском бассейне (Украина) и др.

Осадочные полезные ископаемые наиболее характерны для платформ, так как там располагается платформенный чехол. Преимущественно это нерудные полезные ископаемые и горючие, ведущую роль среди которых играют газ, нефть, уголь, горючие сланцы. Они образовались из накопившихся в прибрежных частях мелководных морей и в озерно-болотных условиях суши остатков растений и животных. Эти обильные органические остатки могли накопиться лишь в достаточно влажных и теплых условиях, благоприятных для пышного развития растительности. В жарких засушливых условиях в мелководных морях и прибрежных лагунах происходило накопление солей, использующихся как сырье в химической промышленности.

Существует несколько способов добычи полезных ископаемых. Во-первых, это открытый способ, при котором горные породы добываются в карьерах. Он экономически более выгоден, так как способствует получению более дешевого продукта. Однако брошенный карьер может стать причиной образования широкой сети оврагов. Шахтный способ добычи угля требует больших затрат, поэтому является более дорогостоящим. Наиболее дешевый способ добычи нефти — фонтанный, когда нефть поднимается по скважине под давлением нефтяных газов. Распространен также насосный способ добычи. Существуют и особые способы добычи полезных ископаемых. Они называются геотехнологическими. С их помощью из недр Земли добывают руду. Делается это закачиванием горячей воды, растворов в пласты, содержащие необходимое полезное ископаемое. Другие скважины откачивают полученный раствор и отделяют ценный компонент.

Источник

Происхождение полезных ископаемых на Земле.

                                                                              Гипотеза.

К существованию на Земле полезных ископаемых мы так привыкли, что и не помышляем задумываться: «Как они появились на Земле?». Считаем, что всё это естественно, как утро после ночи. Земля, конечно, создала полезные ископаемые для того, чтобы появившийся среди животного мира Земли «гомо сапиенс», смог ими воспользоваться для прогресса в своей жизни и деятельности, и создания для себя комфортных условий проживания, оправдывая высказывание, что человек – это венец творения Природы. Но давайте проследим путь – откуда и что появилось.

По современным научным знаниям Земля устроена следующим образом. В её центре находится ядро, состоящее в основном из железа, кремния и никеля. Его радиус около 3,5 тыс. км. Выше ядра расположена мантия толщиною примерно 2900 км., вещество которой состоит преимущественно из кислорода, магния, кремния и небольшого количества железа. В ней также присутствует и ряд других элементов, но все они вместе взятые составляют лишь 10%  от первых четырёх. Всё это укрыто земной корой, средняя толщина которой примерно 35 км. . (Кора тоньше под океанами и толще под горами). На 99% земная кора состоит из восьми элементов, а именно: кислород — 62,5 %, кремний — 21 %, алюминий — 6,5 %  и железо, магний, кальций, натрий и калий – количество каждого из них примерно от1,5%  до 2%.

Как видно, всё имеет своё место, свой химический состав и приспособлено к своему местоположению. Температуры в глубинах Земли сейчас тоже не вызывают опасений. Они стабилизировались. Внутреннее вещество находится в состоянии остывания, которое продолжается примерно миллиард лет. Конечно, пока ещё существуют очаги активной вулканической деятельности, но они имеют локальный, а не глобальный характер. В мантии под корой температура уже ниже температуры расплава вещества. Под материками она 600-7000С, однако, с увеличением глубины температура повышается и в слое Гутенберга она уже 1500-18000С, а в ядре – 4000-50000С.

Читайте также:  Чем полезны молочные продукты для организма

Так ли это было всегда? Давайте заглянем вглубь истории Земли, которая начинается с газопылевого облака, из которого и сформировалась Солнечная система. Это облако было обширно, то есть имело размеры примерно, такие же, как настоящая Солнечная система. Все чужеродные космические тела, попадая в пределы этого облака, переставали существовать самостоятельно, и становились частью этого облака.

Облако, вращаясь, превращалось в довольно плоский диск с шаром-Солнцем в центре. Частицы облака, притягиваясь друг к другу, создавали уже некие крупные образования, которые увеличиваясь и всё более интенсивно притягивая свободные частицы, со временем превращались в планеты. (Более подробную информацию можно получить в материалах сайта www.borgece.at.ua и блога borgece.livejournal.com )

Первоначально Солнечная система состояла из Солнца и десяти планет. Это были: Меркурий, Венера, Земля, Марс, Церера, Фаэтон, Юпитер, Сатурн, Уран и Нептун. Не было Плутона, спутников планет, астероидов, метеоритов и комет.

Солнце в своём раннем возрасте было несколько больше, имело более высокую температуру поверхности и, следовательно, большую мощность излучения энергии. В нём, как и в других звёздах, стали протекать внутренние процессы, которые приводили к вспышкам, наподобие «новых звёзд». Происходили они примерно раз в    30 тыс. лет и сопровождались выбросом солнечного вещества, которое затем, давлением тепла и света Солнца, выталкивалось прочь, достигая самых удаленных планет. Это вещество состояло из элементов, преимущественно верхней части таблицы Менделеева. Вещество слой за слоем оседало на планеты, увеличивая их массу. Естественно, оно было однородным, хотя слои могли отличаться друг от друга в процентах какого-либо элемента. Да и вещество, из которого Земля состояла в стадии формирования, также было практически одинаковым в любом месте и на любой глубине, так как это было вещество газопылевого облака, которое тоже было ни чем иным, как произвольной смесью различных элементов и их соединений.

При увеличении массы Земли, а с нею и внутреннего давления, в её глубинах начали происходить процессы, видимо на атомном уровне (имеется в виду не химическое соединение элементов, а преобразование атома одного элемента в атом другого с выделением энергии), которые и привели к разогреву всей массы Земли. Температуры, особенно в глубинах, со временем стали столь велики, что расплавленное вещество уже имело возможность перемещаться, занимая место сообразно своему удельному весу – тяжёлое — ближе к центру, а лёгкое — к поверхности.

В науке существует уверенность, что разогрев Земли осуществили радиоактивные элементы, и в первую очередь – уран. Не отрицая полностью эту версию, хотелось бы высказать некоторые сомнения по этому поводу.

Урана, задействованного в разогреве Земли, конечно же, было бы недостаточно, чтобы, разогреть всю массу Земли, а затем поддерживать эту температуру в течение      4 млрд. лет, поэтому мы остаёмся при мнении, что здесь имеют место иные  реакции, с перестройкой атомов одних элементов в атомы других. Эти реакции возможны при высоких давлениях и температурах. Высокая температура не только используется элементом для действия, но и даёт ему возможность самому произвести энергию. Предполагается, что в этой реакции произведённая энергия превышает потреблённую.

Разогрев, начавшийся в центральной части, постепенно стал вовлекать в этот процесс и вышележащие слои, что привело к разогреву всего тела планеты. Конечно, потери тепла внешнего слоя были более значительные, поэтому температура на поверхности была намного ниже, чем в глубинах, тем не менее, на верхнем слое этот процесс отразился более заметно. Нижележащие слои, нагреваясь расплавлялись и, расширяясь перемешивались. Верхний же слой-панцирь, нагреваясь и расширяясь во все стороны, коробился, разламываясь, образуя горы и трещины, в которые устремилось расплавленное вещество земных недр.

Теперь эти же процессы рассмотрим с некоторым применением хронологии.

3500 млн. лет назад Земля – это уже состоявшаяся планета, правда, ещё холодная, однако внутри неё уже начался процесс, который впоследствии приведёт её к разогреву. Этот период в геохронологии называется архей. В позднем архее наука уже фиксирует рудообразование, но мы сосредоточим своё внимание на следующим за археем периоде, который называется протерозой, что означает — более ранняя жизнь, и как увидим, в этот период никакой жизни просто не могло существовать.

Протерозой состоял из трёх периодов. Нижний — начался  2600 млн. лет назад,                           средний – 1900 млн. лет, и верхний — 1600 млн. лет назад. Верхний протерозой длился 1030 млн. лет. Общее время протерозоя, который продолжался примерно 2 млрд. лет, было временем ада на Земле. В многочисленных очагах рудообразования расплавленное вещество недр изливалось, покрывая обширные пространства в десятки и сотни километров. Это вещество текло подобно реке или образовывало озёра расплава, который благодаря высоким температурам поверхности Земли, остывал долговременно, успевая вступать в химические реакции с сероводородом атмосферы и с веществом окружающего его грунта. О температурах расплавленного вещества можно судить по тем металлам, которые находились в расплаве.

Если в рудах были хром или титан, то температура должна была быть не ниже 20000С, а если вольфрам, то даже выше 35000С.

Извержение расплавленного вещества из недр длилось какое-то время, после чего наступал период затишья. Видимо, в глубинах в результате реакций, продолжающихся постоянно, накапливалось производное вещество и при достижении какого-то критического объёма эти реакции переходили уже в иную фазу с большим выделением энергии, что и приводило к выплеску вещества глубин наружу.

В различных месторождениях руд, геология в настоящее время обычно обнаруживает несколько активных фаз рудообразования. Их подсчитывают. Оказывается, таких активных фаз рудообразования насчитывается до десяти и даже более.

 Ещё в рудообразовании представляет интерес то, что  фактически из одного и того же исходного материала получаются различные руды с многочисленными сопутствующими элементами, как металлами, так и неметаллами. Конечно, нельзя даже предполагать, чтобы какие-то элементы под воздействием неизвестных сил, стягивались бы к своему очагу рудообразования: кто к медному, кто к железному, а кто-то ещё к какому-то. Такого просто не могло быть. Однако иногда в очагах рудообразования присутствие металлов оценивается в десятки процентов. Не могли же они просто переместиться в это место.                                         

Можно допустить, что на ассортимент рудного месторождения влияла температура и ещё какие-то сопутствующие условия, определявшие, какой элемент должен быть основным в каком-то конкретном случае, то есть что-то вроде специализации месторождения. Может быть, науке удастся это определить, а пока только констатация фактов.

Рудообразование состояло, по крайней мере, из двух стадий. На первой стадии «выпекался» тот или иной элемент в чистом виде и ряд сопутствующих элементов в меньшем количестве, а во второй стадии уже был возможен целый ряд превращений этого элемента от образования так называемых твёрдых растворов с другими элементами, до химических реакций, как в самом жерле, так и при выходе на поверхность. Раскалённая руда в большинстве случаев не окислялась, так как в атмосфере отсутствовал чистый кислород, зато обязательно вступала в соединения с сероводородом, в изобилии находящемся в атмосфере. Возможно, поэтому преобладающее большинство руд – это соединения с серой.

Читайте также:  Для чего полезны запеченные яблоки в духовке

Я в своей книжке рассказов – «Солнце – это основа всего», многократно указываю на различные действия Природы, которые можно считать запланированными, то есть она как бы выполняет программу жизненного цикла (в данном случае на Земле). И образование руд – это очередное подтверждение этого. Науке известно, что в архее атмосфера Земли состояла на 60% из углекислого газа. Далее следовали сероводород и аммиак. Все остальные газы составляли не более 10%. Если гигантская растительность в каменноугольном периоде 350-285 млн. лет назад освободила воздух от углекислого газа, спрятав углерод,  атмосферы в стволы деревьев, которые сейчас покоятся под солнечными выбросами, став углём, то освобождение атмосферы Земли от сероводорода  произошло в протерозое, и это выполнили рудные месторождения.  

Теперь надо сделать какие-то выводы и переходить к чему-то конкретному. Как и прежде, я буду обращаться к материалам своего сайта и блога. Начну с того, что бесспорно. Это — утверждение, что всё в Солнечной системе получено от Солнца.

Солнце взорвалось как сверхновая звезда, и, распылив всё своё вещество, образовало газопылевое облако, где среди прочих элементов присутствовал гелий и его изотоп – гелий-3. Естественно, образовавшаяся из этого вещества молодая Земля уже имела в своей массе какое-то количество изотопа гелия. Природой, видимо, это было запланировано на все времена,  чтобы с чего-то начинать развитие планет. Зная  это, уже можно более уверенно сказать, что разогрев тела Земли осуществлялся с использованием энергии гелия-3.

Что же такого особенного в этом изотопе гелия? Почему он, а не какой-нибудь другой элемент наделён такой энергией?

В действительности большими энергиями наделены все без исключения атомы, аккумулирующие эту энергию в атомном ядре, но дело в том, что обычно ядро атома очень прочно, и это является препятствием к доступности получения этой энергии. Однако есть несколько элементов, ядра которых не столь устойчивы. Это, во-первых – изотопы водорода – дейтерий и тритий, и изотоп гелия-4 – гелий-3. Почему они неустойчивы?

Тело находится в устойчивом состоянии, только тогда, когда оно имеет три точки опоры. (Смотри вышеуказанный сайт и блог). Это относится ко всему, что нас окружает, в том числе и к частицам ядра атома. Частицы дейтерия, трития и гелия-3 не имеют трёх точек опоры (соприкосновения) друг с другом, Следовательно, они находятся в неустойчивом состоянии. Это дало возможность, при использовании дейтерия и трития, создать водородную бомбу, а гелий-3 сулит решить для землян проблему больших энергий. Освоение гелия-3 – надежда человечества.                                                                            

Но там, где большие энергии, присутствует и большой риск. А вдруг энергии будет слишком много и это обернётся  повторением ада, наподобие того, что был в протерозое?  Ведь диаметр Земли, благодаря солнечным выбросам, увеличился на километры.  К нашей радости этого не будет. Ведь основное количество гелия-3 «выгорело» ещё в протерозое. Но наука обнаружила большие запасы гелия-3 на Луне. Оказалось — его там столько, что можно черпать прямо с поверхности бульдозерами и черпалками. Он находится в осевшем на Луну веществе солнечных выбросов, которое находится там  в первозданном состоянии. На Земле же, гелия-3 чрезвычайно мало. А, казалось бы, должно было быть иначе. Ведь на Землю оседает то же самое  вещество солнечных выбросов  и в десятки раз больше, чем на Луну. В чём же причина?
            Есть разные варианты ответа на этот вопрос.

Первозданную сохранность вещества солнечных выбросов на Луне можно объяснить тем, что на Луне отсутствует атмосфера. В условиях Земли, при наличии атмосферы, гелий-3, возможно, просто был выдавлен более тяжёлыми газами воздуха, и теперь он находится в самых верхних слоях атмосферы. Другое. Возможно, подвергаясь воздействию атмосферы и живой природы Земли,он  реагировал на эти воздействия, расходуя свою потенциальную энергию? Ещё. Возможно, он способствовал преобразованию грунта в почву? А может быть, этот перечень причин этим не ограничивается и этому могло способствовать ещё что-то, чего мы не знаем?  Но мы теперь знаем, какое огромное значение для Земли имел изотоп гелий-3.                                                                                                                                       
            Энергия  гелия-3, поступившего из газопылевого облака  при формировании Земли как планеты, разогрела тело Земли, создав ядро Земли, мантию и преобразовав поверхность Земли, то есть на Земле появились возвышенности, впадины и горы.

Сквозь разломы и трещины  земной коры на поверхность изливались лавовые потоки, имеющие температуры расплавленного вещества в тысячи градусов, в которых происходили реакции разрушения атома и создания атомов практически всех элементов существующих ныне.

Огромное значение для появления жизни на Земле явилось то, что расплавленные руды, вступая в реакции с сероводородом атмосферы Земли, освободили атмосферу Земли от этого агрессивного соединения.

И, конечно же, все рудные месторождения Земли, появились только благодаря энергии гелия-3. Человек с благодарностью пользуется этими рудами и минералами.

Хочется порассуждать. А можно ли сейчас, создав условия протерозоя, то есть высокие температуры и давление, получать исскуственно созданные, нужные нам элементы? Ну, например, мечту алхимиков – золото?

Здесь, видимо, уместно ответить вопросом на вопрос: «А разве не получали древние потомки марсиан (смотри вышеуказанный сайт и блог ) исскуственным путём золото?»  Если бы оно в Египте или в других местах колонизации Земли добывалось так же, как добывают его современные старатели, то разве было бы оно для них по цене, как для нас сейчас медь? Откуда там столько золота? Читаем: «У фараона – золота, как песка», «Конкистадоры потребовали в качестве откупа – засыпать золотом всё помещение до окон».

Можно ли при современных знаниях осуществить мечту алхимиков? Если покумекать, то может что-то и придумаем. Ведь Природа одарила разумного человека полуфабрикатами (алюминий, кремний, магний и др.) и даже показала, как из них можно изготовить множество металлов и минералов. А золото может и само подскажет, как его «выпекать» из кремния или магния.

Ну что ж! Есть направление. Осталось только найти верный путь.

         
               PS
          Это обещанное сенсационное сообщение, которое, как и предыдущие, повидимому так же окажется недоступным для широких народных  масс.  Здесь в ЖЖ, оно находится надёжно спрятанным за семью печатями.
                               BORGECE.

Источник