Как найти полезную работу при подъеме тела
На этом уроке мы рассмотрим различное движение тела под действием силы тяжести и научимся находить работу этой силы. Также введём понятие потенциальной энергии тела, узнаем, как связана эта энергия с работой силы тяжести, выведем формулу, по которой находится эта энергия. С помощью данной формулы решим задачу, взятую из сборника для подготовки к единому государственному экзамену.
Введение
На прошлых уроках мы изучили разновидности сил в природе. Для каждой силы необходимо правильно вычислять работу. Данный урок посвящён изучению работы силы тяжести.
Вертикальное движение тела под действием силы тяжести
При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна , где m – масса тела, g – ускорение свободного падения.
Пусть тело массой m свободно падает с высоты над каким-либо уровнем, с которого ведётся отсчёт, до высоты над тем же уровнем (см. Рис. 1).
Рис. 1. Свободное падение тела с высоты до высоты
При этом модуль перемещения тела равен разности этих высот:
Так как направление перемещения и силы тяжести совпадают, то работа силы тяжести равна:
Значение высот в этой формуле можно отсчитывать от любого уровня (уровень моря, уровень дна ямы, которая вырыта в земле, поверхность стола, поверхность пола и т. д.). В любом случае высоту данной поверхности выбирают равной нулю, поэтому уровень данной высоты называют нулевым уровнем.
Если тело падает с высоты h до нулевого уровня, то работа силы тяжести будет равна:
Если тело, брошенное вверх с нулевого уровня, достигает высоты hнад этим уровнем, то работа силы тяжести будет равна:
Движение тела по прямолинейной траектории, наклонённой под некоторым углом к горизонту
Пусть тело массой m движется по наклонной плоскости высотой h и при этом совершает перемещение , модуль которого равен длине наклонной плоскости (см. Рис. 2).
Рис. 2. Движение тела по наклонной плоскости
Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна:
,
где – угол между векторами силы тяжести и перемещения.
На рисунке 2 видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h – катет. Согласно свойству прямоугольного треугольника:
Следовательно
Работа силы тяжести при движении тела по криволинейной траектории
Мы получили выражение для работы силы тяжести такое же, как в случае вертикального движения тела. Можно сделать вывод: если траектория тела не является прямолинейной и тело движется под действием силы тяжести, то работа силы тяжести определяется только изменением высоты тела над некоторым нулевым уровнем и не зависит от траектории движения тела.
Рис. 3. Движение тела по криволинейной траектории
Докажем предыдущее утверждение. Пусть тело движется по некоторой криволинейной траектории (см. Рис. 3). Эту траекторию мысленно разбиваем на ряд малых участков, каждый из которых можно считать маленькой наклонной плоскостью. Движение тела по всей траектории можно представить как движение по множеству наклонных плоскостей. Работа силы тяжести на каждом из участков будет равна произведению силы тяжести на высоту данного участка. Если изменения высот на отдельных участках равны , то работы силы тяжести на них равны:
Полная работа на всей траектории равна сумме работ на отдельных участках:
Так как
– полная высота, которую преодолело тело,
То
Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. Что и требовалось доказать.
При движении вниз работа положительна, при движении вверх – отрицательна.
Работа силы тяжести при движении тела по замкнутой траектории
Пусть некоторое тело совершило движение по замкнутой траектории, то есть оно сначала спустилось вниз, а потом по какой-то другой траектории вернулось в исходную точку. Так как тело оказалось в той же самой точке, в которой оно было изначально, то разность высот между начальным и конечным положением тела равна нулю, поэтому и работа силы тяжести будет равна нулю. Следовательно, работа силы тяжести при движении тела по замкнутой траектории равна нулю.
Потенциальная энергия тела
В формуле для работы силы тяжести вынесем (-1) за скобку:
Из прошлых уроков известно, что работа сил, приложенных к телу, равна разности между конечным и начальным значением кинетической энергии тела. В полученной формуле также видна связь между работой силы тяжести и разностью между значениями некоторой физической величины, равной . Такая величина называется потенциальной энергией тела, которое находится на высоте h над некоторым нулевым уровнем.
Изменение потенциальной энергии отрицательно по величине, если совершается положительная работа силы тяжести (видно из формулы ). Если совершается отрицательная работа, то изменение потенциальной энергии будет положительным.
Если тело падает с высоты h на нулевой уровень, то работа силы тяжести будет равна значению потенциальной энергии тела, поднятого на высоту h.
Потенциальная энергия тела, поднятого на некоторую высоту над нулевым уровнем, равна работе, которую совершит сила тяжести при падении данного тела с данной высоты на нулевой уровень.
В отличие от кинетической энергии, которая зависит от скорости тела, потенциальная энергия может быть не равной нулю даже у покоящихся тел.
Рис. 4. Тело, находящееся ниже нулевого уровня
Если тело находится ниже нулевого уровня, то оно обладает отрицательной потенциальной энергией (см. Рис. 4). То есть знак и модуль потенциальной энергии зависят от выбора нулевого уровня. Работа, которая совершается при перемещении тела, от выбора нулевого уровня не зависит.
Термин «потенциальная энергия» применяется только по отношению к системе тел. Во всех вышеприведенных рассуждениях этой системой была «Земля – тело, поднятое над Землёй».
Задача (нахождение потенциальной энергии)
Однородный прямоугольный параллелепипед массой m с рёбрами располагают на горизонтальной плоскости на каждой из трёх граней поочерёдно. Какова потенциальная энергия параллелепипеда в каждом из этих положений?
Дано:m – масса параллелепипеда; – длина рёбер параллелепипеда.
Найти:; ;
Решение
Если нужно определить потенциальную энергию тела конечных размеров, то можно считать, что вся масса такого тела сосредоточена в одной точке, которая называется центром масс данного тела.
В случае симметричных геометрических тел центр масс совпадает с геометрическим центром, то есть (для данной задачи) с точкой пересечения диагоналей параллелепипеда. Таким образом, необходимо посчитать высоту, на которой расположена данная точка при различных расположениях параллелепипеда (см. Рис. 5).
Рис. 5. Иллюстрация к задаче
Для того чтобы найти потенциальную энергию, необходимо полученные значения высоты умножить на массу параллелепипеда и ускорение свободного падения.
Ответ:; ;
Итоги урока
На данном уроке мы научились вычислять работу силы тяжести. При этом увидели, что, независимо от траектории движении тела, работа силы тяжести определяется разностью между высотами начального и конечного положения тела над некоторым нулевым уровнем. Также мы ввели понятие потенциальной энергии и показали, что работа силы тяжести равна изменению потенциальной энергии тела, взятой с противоположным знаком.
Список литературы
- Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
- Касьянов В.А. Физика. 10 кл.: Учебн. для общеобразоват. учеб. заведений. – М.: Дрофа, 2000.
- А.П. Рымкевич. Физика. Задачник 10–11. – М.: Дрофа, 2006.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Clck.ru (Источник).
- Сlck.ru(Источник).
- Clck.ru (Источник).
Домашнее задание
- Вопросы в конце параграфа 49 (стр. 128); упражнение 9 (1, 5) стр. 134 – Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы) (Источник)
- Чему равна работа силы тяжести при движении тела по замкнутой траектории?
- Как связана потенциальная энергия тела с работой силы тяжести?
- Что такое нулевой уровень?
- Какую работу надо совершить, чтобы переложить пакет с мукой массой 2 кг с полки, находящейся на высоте 0,5 м относительно пола, на стол, находящийся на высоте 0,75 м относительно пола? Чему равны относительно пола потенциальная энергия пакета с мукой, лежавшего на полке, и его потенциальная энергия тогда, когда он находится на столе?
Источник
На этом уроке узнаем, куда пропадает часть затраченной энергии при работе каких-либо механизмов, научимся решать задачи с использованием КПД и познакомимся с мерами по увеличению КПД разных механизмов.
Полезная и затраченная работа
На предыдущих занятиях при рассмотрении устройства и работы простейших механизмов мы не учитывали трение между деталями механизмов, вес механизмов – это идеализированные условия. На практике работа, совершаемая приложенной к телу силой, называется затраченной, она всегда больше работы, которая совершается по перемещению груза, поднятию груза или преодолению сопротивления, эта работа называется полезной (Рис. 1). Полезная работа меньше затраченной .
Рис. 1. Поднимая груз, мы поднимаем крепление, веревки, преодолеваем трение
Коэффициент полезного действия
Отношение полезной работы к затраченной работе, выраженной в процентах, называется коэффициентом полезного действия (КПД): .
КПД выражается в процентах, чтобы его рассчитать, необходимо знать работу полезную и работу затраченную. При этом золотое правило механики не нарушается, потому что часть работы необходимо затратить, например, на трение, и, если сложить эти расходы, получается затраченная работа.
Эксперимент
На наклонной плоскости перемещаем каретку с грузом, с помощью динамометра узнаем вес каретки с грузом, в нашем случае вес 3 Н (Рис. 2).
Рис. 2. Вес каретки с грузом
Далее будем стараться перемещать каретку по наклонной плоскости, заметим при этом показания динамометра, который покажет силу тяги, прикладываемую к каретке. При равномерном перемещении сила тяги равна 1,8 Н. Узнаем путь каретки, он составляет 0,38 м, высота на которую каретку подняли 0,18 м (Рис. 3).
Рис. 3. Поднятие каретки с грузом по наклонной плоскости
Рассчитываем полезную и затраченную работу. Мы подняли груз весом P на высоту h – это полезная работа: .
Сила тяги и путь пройденный кареткой – это затраченная работа: .
Определим КПД: .
Задача
Условие: с помощью неподвижного блока груз массой m = 100 кг, подняли на высоту h = 5 м. Необходимо посчитать затраченную работу , если КПД этой установки = 70% (Рис. 4).
Рис. 4. Работа силы тяжести при поднятии груза
Решение
В формулу расчета КПД запишем известные нам данные и преобразуем, разделив левую и правую часть на 100%.
Из этого выражения получим .
Чтобы рассчитать полезную работу, необходимо выяснить, что полезного совершалось в данной задаче. Груз массой 100 кг поднимали на высоту 5 м.
– ускорение свободного падения
Объединяем все полученные формулы вместе: .
Проверка единиц измерения: .
Ответ: приблизительное значение работы составляет 7143 Дж.
Заключение
Когда конструкторы создают различные механизмы, они стремятся увеличить КПД путём уменьшения трения между частями механизма (смазочные материалы, подбор материалов) или уменьшения веса механизма.
Список рекомендованной литературы
- Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
- Перышкин А.В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
- Перышкин А.В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
Рекомендованные ссылки ресурсы сети Интернет
Интернет-портал «» (Источник)
Домашнее задание
- На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложили силу 250 Н, груз подняли на высоту 0,08 м, при этом точка приложения движущей силы опустилась на высоту 0,4 м. Найти КПД рычага.
- Ящик массой 54 кг с помощью подвижного блока подняли на некоторую высоту. К тросу блока была приложена сила, равная 360 Н. Определите коэффициент полезного действия подвижного блока.
- По наклонному настилу длиной 3 м рабочий вкатил в кузов бочку массой 55 кг. Определите КПД погрузки, если рабочий прилагал силу 330 Н, а высота кузова машины 1,5 м.
Источник
В ходе данного урока вы познакомитесь с методами решения задач на вычисление работы и мощности.
Задача №1
К бруску прикрепили динамометр и переместили брусок на расстояние 30 см. Показания динамометра равны 0,8 Н. Найти работу силы тяги по перемещению бруска (рис. 1).
Рис 1. К задаче №1
Прежде всего запишем краткое условие задачи и позаботимся, чтобы все данные были выражены в системе СИ (рис. 2).
Рис 2. Краткое условие задачи №1
Для вычисления работы воспользуемся формулой
Полное решение задачи выглядит так (рис. 3).
Рис 3. Полное решение задачи №1
Задача №2
Трактор перемещает платформу со скоростью 7,2 км/ч, развивая тяговое усилие в 25 кН. Какую работу совершит трактор за 10 мин (рис. 4)?
Рис 4. К задаче №2
Запишем краткое условие задачи и переведем все единицы измерения в систему СИ (рис. 5).
Рис 5. Краткое условие задачи №2
Для вычисления работы необходимо знать расстояние, пройденное телом. В условии задачи дана скорость движения трактора и время движения, поэтому воспользуемся формулой
которую подставим в выражение для работы и получим рабочую формулу
Подстановка данных из условия задачи дает
Рис 6. Полное решение задачи №2
Задача №3
Найдем работу силы тяжести при падении грузика.
Для решения задачи нам потребуется линейка и сам грузик. Измерим высоту, с которой будет падать грузик. Получаем 1 м. Масса грузика написана на нем самом и равна 100 г. Поднимем грузик на указанную высоту и отпустим его.
Краткое условие задачи будет выглядеть так (рис. 7):
Рис 7. Краткое условие задачи №3
Для нахождения работы выразим силу тяжести через массу тела , и учтем, что расстояние, пройденное телом, равно высоте, с которой оно упало: .
Тогда
Подстановка чисел дает
Рис 8. Полное решение задачи №3
Теперь у нас есть представление о том, насколько велика работа в 1 джоуль. Такая работа совершается при падении грузика массой 100 г со стола высотой 1 м.
Переходим к решению более сложных задач.
Задача №4
Со дна реки глубиной 4 м поднимают камень объемом 0,6 м3 на поверхность. Плотность камня 2500 кг/м3, плотность воды 1000 кг/м3. Найти работу по подъему камня.
Для решения задачи необходимо не только записать краткое условие задачи, но и сделать схематический рисунок и показать силы, действующие на камень. Это сила тяги Fт (работу именно этой силы мы будем находить), сила тяжести mg и сила Архимеда Fa. Кроме того, покажем высоту, на которую сила тяги перемещает камень (рис. 9).
Рис 9. К решению задачи №4
Как видно из рисунка, искомая работа равна .
Для нахождения силы тяги воспользуемся условием равновесия тела: если оно неподвижно или движется с постоянной скоростью, то равнодействующая всех сил, приложенных к нему, равна нулю.
, откуда .
Массу камня выразим через плотность камня и его объем, а силу Архимеда – через плотность воды и объем погруженной части камня (в этом задаче он равен объему всего камня). Объем камня и ускорение выносим за скобки.
Остается подставить силу тяги в формулу для вычисления работы
Поскольку рабочая формула получилась более сложной, единицы измерения результата определим отдельно от расчета его численного значения.
Рис 10. Полное решение задачи №4
Задача №5
Поршень двигателя перемещается на 20 см под давлением 800 кПа. Определите работу, совершаемую двигателем за один ход поршня, если площадь поршня 150 см2 (рис. 11).
Рис 11. К задаче №5
Запишем краткое условие и выразим все единицы в системе СИ (рис. 12).
Рис. 12. Краткое условие задачи №5
В данной задаче работу выполняет сила давления газа в цилиндре двигателя. Для нахождения этой силы необходимо давление в цилиндре умножить на площадь поршня. Расстояние, пройденное поршнем, мы обозначили буквой l.
Единицы измерения результата:
Численное значение результата:
Рис 13. Полное решение задачи №5
Задача №6
Найти КПД (коэффициент полезного действия) наклонной плоскости (экспериментальная) (рис. 14).
Рис. 14. Груз поднимают вверх по наклонной плоскости
Поднимая груз по наклонной плоскости с помощью динамометра, измерим силу, которая для этого требуется. Она оказывается равной 2,2 Н. Расстояние, пройденное грузом вдоль плоскости, измеряем рулеткой. Оно составило 0,5 м. При этом груз поднялся над столом на высоту 20 см. Кроме того, известны масса бруска, равная 50 г, и общая масса трех поднимаемых грузов – 300 г.
Полученные опытные данные занесем в краткое условие задачи, выразим все величины в единицах системы СИ и сделаем схематический рисунок измерительной установки (рис. 15).
Рис 15. Краткое условие задачи №6
Коэффициентом полезного действия механизма называется физическая величина, равная отношению полезной работы, совершенной механизмом, к работе, затраченной для приведения его в действие.
КПД также обозначают греческой буквой η (эта) и часто выражают в процентах.
В нашем случае механизмом является наклонная плоскость.
Полезная работа – эта работа, которую нужно совершить, чтобы поднять тело на высоту h.
Затраченная работа совершается силой тяги, то есть силой упругости пружины динамометра.
Тогда КПД равен
Определяем единицы измерения КПД
Такой результат означает, что КПД является безразмерной величиной (просто число без единиц измерения).
Его числовое значение
Обратите внимание, что коэффициент полезного действия не может быть больше единицы, поскольку полезная работа всегда меньше затраченной. Если у вас получилось наоборот, значит, либо при измерениях, либо в ходе вычислений допущена ошибка.
Рис 16. Полное решение задачи №6
Задача №7
Трактор равномерно тянет плуг, прилагая силу в 10 кН. За 10 мин он проходит путь 1,2 км. Определить мощность, развиваемую трактором (рис. 17).
Рис 17. К условию задачи №7
Запись краткого условия и перевод величин в систему СИ будет выглядеть так (рис. 18):
Рис 18. Краткое условие задачи №7
Для нахождения мощности нужно работу, выполненную трактором, разделить на время ее выполнения. Работа вычисляется как произведение силы тяги трактора на пройденное трактором расстояние. Таким образом, получаем:
Рис 19. Полное решение задачи №7
Задача №8
Поезд массой 600 тонн равномерно движется со скоростью 36 км/ч. Определить развиваемую тепловозом мощность, если сила трения составляет 0,002 веса поезда.
Рис. 20. К условию задачи №8
Запишем краткое условие задачи, выразим величины в единицах системы СИ, сделаем рисунок, на котором покажем силу тяги тепловоза и силу трения (рис. 21).
Рис. 21. Краткое условие задачи №8
Поскольку по условию задачи скорость поезда не изменяется и равна 36 км/ч, сила тяги равна силе трения Вес в случае движения с постоянной скоростью равен силе тяжести Тогда сила тяги равна
Для вычисления мощности воспользуемся формулой откуда
Подстановка данных из условия дает
Рис. 22. Полное решение задачи №8
Список литературы
- Перышкин А.В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
- Перышкин А.В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
- Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
Домашнее задание
- Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов №675–683, 706–712.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Единая коллекция Цифровых Образовательных Ресурсов (Источник).
- Единая коллекция Цифровых Образовательных Ресурсов (Источник).
Источник