Какие полезные ископаемые есть на юпитере
Разговоры о добыче полезных ископаемых на небесных телах кажутся либо абсолютной фантастикой, либо делом далекого будущего. Однако уже сегодня есть люди, которые готовы перевести эти разговоры в практическую плоскость и мало-помалу превращать фантастику в бизнес-стратегию.
В нынешнем апреле группа инвесторов совместно с несколькими ветеранами аэрокосмической области учредила новую компанию, Planetary Resources, чья задача состоит в разработке полезных ископаемых, содержащихся в астероидах. «Ставка на прорыв в научно-технической сфере подразумевает исключительный коммерческий риск», — говорит сопредседатель в правлении этого стартапа Питер Диамандис. Компания поддерживается такими первопроходцами в технической сфере, как гендиректор компании Google Ларри Пейдж, кинорежиссер и изобретатель Джеймс Кэмерон, гуру программирования из компании Microsoft Чарльз Симоний. Конечно, все эти люди не рассчитывают на быстрый возврат инвестиций. «Полеты к астероидам начнутся уже через несколько лет, — говорит другой сопредседатель Эрик Андерсон, — но мы планируем нашу деятельность в расчете на столетнюю перспективу развития этой отрасли».
Шаг 1. Анализируем перспективы
Прежде чем начать добычу полезных ископаемых в космосе, компании Planetary Resources нужно подобрать астероид, который пообещал бы при разработке хорошую экономическую отдачу. Однако астероиды — это не звезды, а небольшие темные небесные тела, которые очень трудно разглядеть через толщу земной атмосферы. Лучше всего было бы охотиться на них с помощью телескопа, подвешенного в космическом пространстве. Вот почему в штаб-квартире компании Planetary Resources, расположенной в Бельвю, штат Вашингтон, президент компании, а по совместительству и ее главный инженер Крис Левицки уже приступил к сборке телескопа серии Arkyd 100. Это будет первый космический телескоп во владении частной компании.
Что можно искать в космосе?
Воду. Хондритовый астероид (С-типа) диаметром всего 7 м может содержать в себе 100 тонн воды. Она может потребоваться для синтеза ракетного топлива или для жизнеобеспечения астронавтов.
Металлы. Металлический астероид размером 24 м может содержать 33000 тонн пригодного к использованию металла. Одной только платины в нем содержится количество, эквивалентное 50 миллионам долларов. Вот только смогут ли космические згорнодобытчики воспользоваться этими богатствами?
Космический аппарат весом всего 20 кг будет поменьше и попроще, чем любой из космических телескопов, построенных на государственные средства. Hubble, например, обошедшийся казне в полтора миллиарда долларов, имеет первичное зеркало диаметром 235 см, а зеркало телескопа Arkyd составит в диаметре всего-то 22,5 см. Hubble обладает широким полем зрения и набором инструментов, позволяющих сканировать глубины космического пространства. Arkyd нацелен на гораздо более простую задачу — поиск объектов пределах Солнечной системы. Малые размеры — большая экономия. Стоимость вывода таких аппаратов на орбиту можно радикально снизить, запуская их в качестве дополнительного груза вместе с крупными спутниками на чужих ракетах-носителях.
Planetary Resources собирается построить целый флот таких малоразмерных космических телескопов, снизив стоимость каждого как минимум до $10 млн. Такая стратегия позволяет и подстраховаться на случай отказа одного из аппаратов. «Необходимо поставить эту работу на конвейер, — говорит Левицки (ранее он в Лаборатории реактивного движения занимался темой полетов на Марс). — Неправильно было бы вложить все средства в один драгоценный аппарат, чтобы потом носиться с ним как с писаной торбой».
На этом этапе компания уже совершит первую попытку окупить свои капиталовложения, сдавая в аренду аппараты Arkyd 100. Телескопы космического базирования могут заинтересовать и астрономов, и тех ученых, которым было бы интересно исследовать земную поверхность с разрешением около 2 м на пиксель. Первый свой аппарат Planetary Resources планирует запустить уже к концу 2013 года, а какова будет стоимость аренды, руководство компании пока не решило.
При разработке космических полезных ископаемых вода будет цениться намного дороже золота. Ее ценность становится наглядной, если вспомнить, из каких элементов она состоит. Водород — то самое, что нужно для перезарядки топливных элементов, при повторном соединении водорода с кислородом мы получим весьма энергоемкое топливо. Воду намного дешевле будет находить в космосе, чем доставлять с Земли. Ведь запуск в космос каждого килограмма обойдется в десятки тысяч долларов. Компания Planetary Resources может извлекать прибыль, продавая добытую в космосе воду каким-либо государственным космическим агентствам или частным космоперевозчикам. Цена такой воды может быть ниже, чем стоимость ее доставки с Земли, и при этом такая торговля может оказаться весьма прибыльной.
Лучшими источниками H2O могут считаться астероиды из углеродистого хондрита. Как говорит Джон Льюис, заслуженный профессор Университета Аризоны и автор книги «Полезные ископаемые в небесах», упомянутые выше астероиды (их еще называют астероидами С-класса) имеют рыхлую, хрупкую структуру. «Кубик такого минерала можно раздавить, просто сжав между большим и указательным пальцами». На таком астероиде бурение не потребуется — чтобы извлечь воду, достаточно будет просто скоблить его поверхность.
Сотрудник NASA стоит перед шестью сегментами главного зеркала из космического телескопа Джеймса Уэбба. Пионеры внеземной геологоразведки станут первыми частными владельцами космических телескопов. Возможно, они даже будут сдавать их в аренду.
Шаг 2. Найти и «застолбить» участок
Космические телескопы засекли какой-то перспективный в плане разработки космический объект. Теперь у нас есть только один способ выяснить, чего стоят содержащиеся в нем ресурсы — подобраться к нему поближе.
Дальнейший сценарий в компании Planetary Resources представляют себе так. Целая стая роботов-разведчиков направляется в сторону обнаруженного астероида (он относится к классу «околоземных астероидов» или NEA) и облетает его со всех сторон. «Наши межпланетные зонды будут стоить во много раз меньше, чем нынешние модели, а для этого необходимо радикально изменить подход к задаче», — говорит Диамандис. Новый вид реактивного движителя, который при этом имеется в виду, агентство NASA уже дважды использовало в исследованиях глубокого космоса. Речь идет ионном двигателе, в котором поток ионизированного газа (ксенона), разгоняются в электростатическом поле. В результате формируется тяга, которая неспешно, в течение нескольких лет способна разогнать космический аппарат до приличных скоростей. Процесс довольно медленный, но к финишу скорость может превышать 300 000 км/час.
Интересующие нас астероиды будут, скорее всего, иметь в диаметре километр-полтора. Небесные тела таких размеров слишком малы, чтобы породить заметную силу притяжения. Посадка космического аппарата на такой «камень» просто невозможна. Здесь, скорее, следует говорить о «стыковке». Зонд медленно приблизится к поверхности астероида, мягко коснется цели, после чего нужно будет задействовать что-то вроде якоря. Если для этой цели использовать кошки или крючья, есть вероятность, что якорная лапа выворотит из поверхности кусок породы, а сам аппарат, ударившись, отлетит от астероида. Разумнее было бы использовать какие-то буровые устройства, которые могли бы ввинчиваться в посадочную площадку, надежно удерживая аппарат на поверхности планеты.
После этого робот может провести химический анализ породы, определить, есть ли там вода и какие-либо металлы. Результаты анализа будут переданы на Землю. Идеальным для такого экспресс-анализа можно было бы считать спектроскоп на базе лазерно-индуцированного пробоя среды (LIBS). При этой методике под воздействием лазерного луча поверхность образца испаряется, после чего соответствующие датчики могут анализировать свет, излученный плазмой, возникшей в результате испарения, и фиксировать наличие в образце тех или иных элементов. Первые аппараты, построенные на принципе LIBS, ChemCam, будут задействованы при исследовании чужих миров, когда ровер Curiosity достигнет Марса на борту отправленного NASA космического аппарата.
Астероид пойман и готов к доставке. Для дальнейшего обследования и переработки астероиды можно подтащить поближе к Земле. В своем апрельском отчете Институт космических исследований Кека, действующий при Калифорнийском технологическом институте, расписал, как можно было бы перевести один из астероидов на лунную орбиту. Такое космическое тело могло бы стать для астронавтов весьма привлекательной тренировочной площадкой. «Выполнение этой программы будет очередным шагом на пути в солнечную систему», — говорит один из руководителей проекта Луис Фридман. На иллюстрации: 1.Обмеры. Комплекс лазеров и радаров выдает информацию о размерах астероида. После этого космический аппарат развертывает свой высокопрочный сачок до нужного размера. Конструкция из надувных лап, соединенных между собой тросами, должна плотно охватить пойманный астероид.
2.Отлов жертвы. Итак, астероид пойман в сачок. Датчики, закрепленные на конструкции снаружи, позволяют убедиться, что астероид не греется и не теряет свой водный запас.
3.Доставка домой. Аппарат отправляется в долгий обратный путь к лунной орбите. Эта дорога может занять шесть лет, и только по прибытии будет начата разработка астероида.
Зонд-разведчик может также пометить выбранный астероид, закрепив на его поверхности радиомаячок. Как утверждают в руководстве компании, такой маячок нужен не только для того, чтобы облегчить в дальнейшем поиск выбранного астероида. «Установка радиомаяка может служить неким юридическим жестом, подтверждающим право владения», — говорит Диамандис.
Вопрос о претензиях частной компании на какой-либо астероид пока слабо отражен в международном законодательстве. В 1967 году был заключен Договор по космосу, а сейчас его ратифицировало более сотни государств. Уже в будущем десятилетии перед юристами встанет задача как-то зафиксировать в этом договоре права предпринимателей из частного сектора. Но, скорее всего, подтвердится известное изречение о том, что владение — 9/10 права, и простой радиопередатчик, укрепленный на астероиде, вполне сможет гарантировать права собственности той компании, что установила маячок.
Робот-прототип, разработанный в Лаборатории реактивного движения NASA, вместо опор имеет 750 стальных крючков. Они цепляются к шершавым поверхностям, не позволяя роботу в условиях слабого притяжения отцепиться от поверхности астероида и улететь в космическое пространство.
Итак, представим себе, как рой горнодобывающих роботов, цепляясь за поверхность астероида своими когтистыми лапками, с хрустом грызет насыщенный водой слой грунта, используя для этого нечто вроде хоботков. Тем временем другие аппараты пылесосят поверхность планеты, следуя по стопам добытчиков и утрамбовывая остатки их деятельности. После этого умелые машины будут упаковывать грунт, то есть реголит, в специальные герметичные контейнеры. Эти роботы будут ползать, ходить или летать, регулярно навещая «горнообогатительную фабрику», «висящую» над поверхностью астероида или просто пришвартованную к нему намертво. Там реголит разогреют, выпарят из него воду и соберут ее в баки хранилища.
Инфраструктура добычи полезных ископаемых в космосе. С 2009 по 2011 год агентство NASA с помощью своего космического телескопа WISE (Wide-field Infrared Survey Explorer) создавало сводный каталог астероидов, имеющихся в Солнечной системе.
В поясе между Марсом и Юпитером было обнаружено 100 000 ранее неизвестных астероидов. 19500 астероидов среднего размера обнаружилось неподалеку от Земли.
Зафиксировано 4700 крупных астероидов, попадающих в пределы относительной космической близости к Земле (критерием считался радиус 8 миллионов километров, и такие астероиды объявлялись потенциально опасными). В NASA считают, что в данный каталог попало только 30% из числа таких потенциально опасных астероидов.
Более сложные задачи встанут перед космическими горнодобытчиками, если они решатся на добычу металлов. Астероиды М-типа, представляющие собой просто здоровенные глыбы металла, окажутся крепким орешком для космического горнорудного предприятия. Таково мнение Гарри Максуина, геолога из Университета штата Теннесси и председателя группы исследования поверхности астероида в экспедиции Dawn, которую NASA организовало для исследования астероидов. Сама попытка закрепиться на поверхности такого небесного тела уже будет представлять собой достаточно сложную задачу. О бурении металлического массива можно забыть — как и о попытке отпилить от него кусок, чтобы забрать его на переработку. «Только подумайте, сколько на это уйдет энергии, и вы поймете, что задача не слишком-то реалистична», — говорит Максуин.
Технологии космических горнодобытчиков
Магнитные грабли. В некоторых случаях для добычи драгоценных металлов не потребуется рыть никаких шахт. Достаточно будет граблей или гребешка с магнитами на каждом зубце. Стоит пройтись такой бороной по поверхности реголита, и в условиях малой гравитации зерна драгметаллов сами прилипнут к зубьям.
Сито, действующее при слабых гравитационных силах. Вот вам повод для реверансов перед золотоискателями старой закалки. В 2009 году ученые попробовали использовать вибростол для просеивания грунта через решето, чтобы отделить частицы того размера, который является оптимальным для дальнейшей переработки. Эта система продемонстрировала работоспособность при нулевой гравитации, которую создавали полетом самолета по параболической траектории.
Якоря для швартовки к астероиду. В условиях практически нулевой гравитации приземлиться на астероид — непростая задача. Ничуть не проще в такой обстановке вести добычу ископаемых. В лаборатории реактивного движения при NASA разрабатываются сейчас механизмы для забивки в грунт астероида клиньев, ориентированных под разными углами — так они должны держаться существенно надежнее. С другой стороны, компания Honeybee Robotics занимается сейчас разработкой ввинчивающихся буров, которые должны еще надежнее крепить космические аппараты к поверхности астероида.
Правда, по расчетам Льюиса, некоторые из астероидов могут состоять из металла всего на 30%, где металлы представляют собой железо-никель-кобальтовый сплав или сплав платиновой группы. Как он говорит, «велик соблазн просто взять магнит и с его помощью извлечь крупинки металла из раздробленного реголита».
Доставка продукции
С продавцом все ясно, но кто будет покупателем? Кому потребуется товар, который космические горняки добыли с таким трудом?
Металлы платиновой группы — вот надежда на быстрое обогащение. Это один из редких видов продукции, добытой в космосе, которую рентабельно доставлять на Землю. «Эти металлы широко используются сейчас во многих распространенных современных технологических процессах», — говорит Левицки. Металлы платиновой группы просто незаменимы в автомобильных катализаторах, в производстве силикона и стекла. Они присутствуют в компьютерных жестких дисках, в автомобильных свечах, где, подавляя коррозию, они продлевают жизнь свечи до пробега в 160000 км. В медицине эти металлы незаменимы благодаря их совместимости с биологическими тканями.
Допустим, у нас есть 500-тонный астероид, в котором содержится 0,0015 процента металлов платиновой группы. Это ведь не так плохо и втрое превышает концентрацию в самых богатых месторождениях платины, известных сейчас на Земле. Как говорит Левицки, «если радикально увеличить количество доступной на Земле платины, мы станем свидетелями зарождения новых отраслей производства, которые нам трудно сейчас даже представить».
Однако большая часть веществ, добытых на астероидах, найдет своего покупателя только в весьма отдаленном будущем, когда дальние космические путешествия станут обычным занятием для обитателей Земли. Вот тогда станут необходимы внеземные перевалочные базы, где астронавты, направляясь в дальние края, смогут пополнить запасы воды и топлива. А сейчас — раз нет таких покупателей, значит, не нужны и такие предложения на рынке космических услуг.
Под таким же углом можно рассматривать и проекты, связанные с добычей обычных конструкционных металлов. Они обретут реальность только тогда, когда космические корабли и станции станут производить не на Земле, а на орбите. Разумеется, производство каких-то конструкций в условиях открытого космоса выглядит весьма привлекательно, если сознавать, что мы таким образом экономим на доставке с Земли готовых блоков, однако это направление, если понимать его как вид коммерческой деятельности, всегда будет под угрозой со стороны космических перевозчиков, которые стремятся придумать новые, более дешевые способы вывода земных товаров на орбиту.
Если наступит эпоха, когда обитатели орбитальных станций будут питаться со своих огородов, среди товаров, предлагаемых на космическом рынке появятся не только железо и сталь. Возникнет спрос на азот и аммиак, которые необходимы в космическом земледелии как удобрения. Если человечество начнет всерьез обживаться в космосе, такие отрасли производства и сегменты рынка станут вполне актуальны. Как выразился Льюис, «мы говорим о тех отраслях промышленности, которые помогут обрезать пуповину, связывающую нас с родной планетой».
Проекты компании Planetary Resources — это не просто бизнес-план. Это написанная в самых радужных красках картина, призывающая нас поддерживать дальнейшие космические исследования. Это слово в защиту самых дерзких мечтаний, которые человечество когда-нибудь сделает реальностью.
Вполне возможно, некоторые металлические астероиды имело бы смысл целиком подтянуть поближе к Земле — хотя бы до лунной орбиты. «В них может содержаться такое количество металла, что стоит задуматься, как бы прихватить всю такую штуковину целиком», — говорит Льюис.
Статья «Космический клондайк» опубликована в журнале «Популярная механика»
(№9, Сентябрь 2012).
Источник
Астероиды – это начальный материал, оставшийся после образования Солнечной Системы. Они распространены везде: некоторые пролетают совсем близко к Солнцу, другие обнаружены неподалеку от орбиты Нептуна. Огромное количество астероидов собрано между Юпитером и Марсом – они формируют так называемый Пояс астероидов. На сегодняшний день было обнаружено около 9000 объектов, проходящих рядом с орбитой Земли.
Многие из таких астероидов находятся в зоне доступа и многие же содержат огромные запасы ресурсов: начиная от воды, заканчивая платиной. Их использование даст практически бесконечный источник, который установит стабильность на Земле, увеличит благосостояние человечества, а также создаст основу для присутствия и исследования космоса.
Невероятные ресурсы
Существует более 1500 астероидов, до которых также легко добраться, как и до Луны. Их орбиты пересекаются с орбитой Земли. Такие астероиды обладают небольшой силой тяжести, что облегчает задачи посадки и взлета.
Ресурсы астероидов обладают рядом уникальных особенностей, что делает их еще более привлекательными. В отличие от Земли, где тяжелые металлы расположены ближе к ядру, металлы на астероидах распределены по всему объекту. Таким образом, извлекать их намного легче.
Астероиды содержат драгоценные и полезные минералы, например, железо, никель, воду, МПГ, золото. Зачастую их концентрации могут сравниться с концентрациями на богатейших месторождениях Земли.
Человечество только начинает понимать невероятный потенциал астероидов. Первый контакт космического аппарата с одним из них произошел в 1991 году, когда аппарат «Галилео» пролетел рядом с астероидом Гаспра на его пути к Юпитеру. Наше знание таких небесных соседей было революционизировано немногочисленными международными и американскими миссиями, предпринятыми с тех пор. Во время каждой из них наука об астероидах заново переписывалась.
Об открытии и количестве астероидов
Миллионы астероидов пролетают мимо орбит Марса и Юпитера, чьи гравитационные пертурбации выталкивают некоторые объекты ближе к Солнцу. Таким образом и появился класс околоземных астероидов.
Пояс астероидов
Когда говорят об астероидах, большинство людей представляют именно их Пояс. Миллионы объектов составляющих его, образуют похожий на кольцо район меду орбитами Марса и Юпитера. Несмотря на то, что эти астероиды очень важны с точки зрения понимания истории возникновения и развития Солнечной Системы, по сравнению с околоземными, добраться до них не так легко.
Околоземные астероиды
Околоземные астероиды определяются как астероиды, чья орбита или ее часть находится в промежутке от 0,983 до 1,3 астрономических единиц от Солнца (1 астрономическая единица – расстояние от Земли до Солнца).
На 1960 год было известно лишь о 20 околоземных астроидах. К 1990 году число выросло до 134, а на сегодняшний день их количество оценивается в 9000 и растет все время. Ученые уверены, что на самом деле их более миллиона. Среди наблюдаемых сегодня астероидов 981 из них больше 1 км в диаметре, остальные – от 100 м до 1 км. 2800 – меньше 100 м в диаметре.
Околоземные астероиды классифицируются на 3 группы в зависимости от их расстояния от Солнца: Атоны, Аполлоны и Амуры.
Два околоземных астероида посещались космическими аппаратами-роботами: миссия НАСА посетила астероид 433 Эрос, а японская «Hayabusa» астроид 25143 Итокава. В настоящее время НАСА работает над миссией «OSIRIS-Rex», цель которой – полет к углеродному астероиду 1999 RQ36 в 2019 году.
Состав астероидов
Околоземные астроиды широко варьируются по своему составу. Каждый их низ в различных количествах содержит воду, металлы и углеродистые материалы.
Вода
Вода с астероидов – это ключевой ресурс в космосе. Воду можно превратить в ракетное топливо или снабжать ей людские нужды. Кроме того, она может кардинальным образом изменить способ исследования космоса. Один богатый водой астероид шириной 500 м содержит в 80 раз больше воды, чем может поместиться в самый крупный танкер, а если ее превратить в топливо для космических аппаратов, то получится в 200 раз больше, чем требовалось для запуска всех ракет в истории человечества.
Редкие металлы
Однажды получив доступ, научившись добывать, извлекать и использовать водные ресурсы астероидов, добыча на них металлов станет намного реальнее. Некоторые околоземные объекты содержат МПГ в таких высоких концентрациях, какими могут похвастаться лишь богатейшие земные рудники. Один богатый платиной астероид шириной 500 м содержит почти в 174 раза больше этого металла, чем добывается на Земле в год и в 1,5 раза больше всех известных мировых запасов МПГ. Такого количества достаточно для того, чтобы заполнить баскетбольную площадку на 4 раза выше кольца.
Другие ресурсы
Астроиды также содержат более распространенные металлы, например, железо, никель, кобальт. Иногда в невероятных количествах. Кроме того, на них можно встретить летучие вещества, например, азот, CO, CO2 и метан.
Использование астероидов
Вода – важнейший элемент Солнечной Системы. Для космоса вода, помимо своей критической гидратационной роли, предоставляет и другие важные преимущества. Она может защитить от солнечной радиации, использоваться в качестве топлива, давать кислород и т.д. На сегодняшний день, вся вода и связанные с ней ресурсы, необходимые для космических полетов, транспортируются с поверхности Земли по безмерно высоким ценам. Среди всех ограничений на человеческую экспансию в космос, это самое важное.
Вода – ключ к Солнечной Системе
Воду с астероидов можно как конвертировать в ракетное топливо, так и поставлять в специальные хранилища, расположенные в стратегических местах на орбите для заправки космических кораблей. Такой вид топлива, поставляемый и продаваемый, даст огромный толчок к развитию космических полетов.
Вода с астероидов может значительно сократить затраты на космические миссии, поскольку все они зависят, в первую очередь, от топлива. Например, намного более выгодно транспортировать литр воды с одного из астероидов на орбиту Земли, чем доставить этот же литр с поверхности планеты.
На орбите воду можно использовать для заправки спутников, увеличения грузоподъемности ракет, обслуживания орбитальных станций, предоставлять защиту от радиации и т.д.
Стоимость вопроса
Богатый водой астероид шириной 500 м обладает водой стоимостью $50 миллиардов. Ее можно доставить на специальную космическую станцию, где будут заправлять аппараты для полетов в дальний космос. Это весьма эффективно даже при скептических предположениях, что: 1. Извлекаться будет всего 1% воды, 2. Половина добытой воды будет использовать при доставке, 3. Успешность коммерческих космических полетов приведет к 100-кратном снижению стоимости запуска ракет с Земли. Конечно, при не столь консервативном подходе, ценность астероидов вырастет на многие триллионы или даже десятки триллионов долларов.
Экономика операций по разработке астероидов может также быть улучшена при использовании «местного» топлива. То есть горнодобывающий аппарат может летать между планетами с помощью воды от того астероида, на котором она добыта, что приведет к высокой окупаемости.
От воды к металлам
При условии успешности добычи воды, разработка других элементов и металлов станет намного более реальной. Другими словами, добыча воды позволит добывать металлы.
МПГ на Земле встречаются очень редко. Они (как и похожие на них металлы) обладают специфическими химическими свойствами, которые делают их невероятно ценными для промышленности и экономики 21 века. Кроме того, их изобилие может дать начало к новому, еще не изведанному, их применению.
Использование металлов с астероидов в космосе
Кроме доставки на Землю, металлы, добытые на астероидах, могут использоваться прямо в космосе. Такие элементы, как, например, железо и алюминий, можно будет применять при строительстве космических объектов, защиты аппаратов и т.д.
Целевые астероиды
Доступность
Более 1500 астероидов можно достигнуть также легко, как и Луны. Если брать в расчет обратный пути, то цифра увеличивается до 4000. Вода, извлекаемая на них, может быть использована для обратного полета на Землю. Это еще больше увеличивает доступность астероидов.
Расстояние от Земли
В определенных случаях, особенно во время первых миссий, следует нацеливаться на астероиды, которые проходят в районе Земля-Луна. Большая их часть не пролетает так близко, но есть и исключения.
Благодаря стремительному уровню обнаружения новых околоземных астероидов и увеличению возможностей их исследования, весьма вероятно, что большинство доступных объектов еще предстоит открыть.
Planetary Resources
Все выше перечисленное интересует многие организации и отдельных людей. Многие видят в этом будущее добычи в целом и Земли в частности.
Именно такими людьми была основана компания Planetary Resources, официально объявленная цель которой заключается применении коммерческих, инновационных технологий для исследования космоса. Planetary Resources собирается развивать недорогие роботизированные космические аппараты, которые позволят открывать тысячи богатых ресурсами астероидов. Компания планирует использовать природные богатства космоса для развития экономики, строя, таким образом, будущее всего человечества.
Ближайшая цель Planetary Resources – значительным образом сократить стоимость разработки астероидов. При этом будут объединяться все самые лучшие коммерческие аэрокосмические технологии. Как заявляют в компании, их философия позволит быстро развивать частное, коммерческое изучение космоса.
Технологии
Большая часть технологий Planetary Resources – их собственные. Технологический подход компании обусловлен несколькими простыми принципами. Planetary Resources объединяет современные инновации в области микроэлектроники, медицины, информационных технологий, роботостроения.
Arkyd series 100 LEO
Исследование космоса ставит специфичные преграды в деле строительства космических аппаратов. Критически важными аспектами в этом вопросе являются оптические коммуникации, микродвигатели и т.д. Planetary Resources активно работает над ними в сотрудничестве с НАСА. Сегодня уже создан космический телеском Arkyd series 100 LEO (рис.слева). Leo – это первый частный космический телескоп и средство достижения околоземных астероидов. Он будет находиться на низкой земной орбите.
Arkyd series 200 — Interceptor
Будущие усовершенствования телескопа Leo откроют дорогу для следующего этапа – запуска миссии аппарата Arkyd series 200 — Interceptor (рис.слева). В стыковке со специальным геостационарным спутником, Interceptor пройдет позиционирование и отправится к целевому астероиду для сбора всех необходимых данных о нем. Два или более аппарата Interceptor могут работать вместе. Они позволят определять, отслеживать и сопровождать объекты, пролетающие между Землей и Луной. Миссии Interceptor позволят Planetary Resources быстро получить данные о нескольких околоземных астероидах.
Arkyd series 300 Rendezvous Prospector
Дополнив Interceptor возможностью лазерной коммуникации в глубоком космосе, Planetary Resources сможет приступить к миссии аппарата под названием Arkyd series 300 Rendezvous Prospector (рис.слева), целью которой являются более дальние астероиды. Встав на орбиту одного из них, Rendezvous Prospector будет собирать данные о форме астероида, вращении, плотности, составе поверхности и недр. Применение Rendezvous Prospector продемонстрирует относительно небольшую стоимость возможности межпланетных полетов, что соответствует интересам НАСА, различных научных организаций, частных компаний и т.д.
Добыча на астероиде
Добыча и извлечение металлов и других ресурсов в условиях микрогравитации – дело, которое будет зависеть от значительных исследований и вложений. Planetary Resources будет работать над критически важными технологиями, которые позволят получать на астероидах как воду, так и металлы. Вкупе с недорогими аппаратами для исследования космоса, это дает возможность устойчивого развития этой области.
Команда Planetary Resources
В состав Planetary Resources входят выдающиеся в своем деле люди: ученые инженеры, специалисты в самых разных сферах. Основателями компании считаются бизнесмена и пионера коммерческой космической индустрии Эрик Андерсон и Питер Диамандис. Среди других членов команды Planetary Resources есть бывшие специалисты НАСА Крис Левицки и Крис Вурхиз, знаменитый кинорежиссер Джеймс Кэмерон, бывший астронавт НАСА Томас Джонс, бывший технический директор Microsoft Дэвид Васкевич и другие.
Источник: https://www.planetaryresources.com/. Перевод: Верхозин С.С.
Дополнительные материалы
Гонка началась (читать)
-1+3
Просмотров статьи: 46911, комментариев: 68
- Содержание сайта
- Комментарии
- Главная страница
Источник