Какой может быть твердость полезных ископаемых
Полезными ископаемыми называют минералы и горные породы, которые добывают из глубин земли для использования в производстве промышленной продукции.
По физическому состоянию полезные ископаемые делятся на:
- твердые;
- жидкие;
- газовые.
В зависимости от использования и состава, полезные ископаемые распределяют на:
- рудные;
- нерудные;
- топливо.
Руды являются полезными ископаемыми, которые в своем составе имеют металл в объеме, необходимом для его промышленного получения. Полиметаллическими называют руды, в составе которых есть несколько полезных металлов.
К нерудным ископаемым относят минералы, используемые для промышленности (для металлургии — известняк, для строительной промышленности — известняк, гранит, песок и другое, для химической промышленности — апатиты, фосфориты, соль, слюда и др.).
К топливу относят:
- бурый и каменный уголь;
- горючие сланцы;
- нефть,
- газ и прочее.
Месторождение полезных ископаемых составляет естественное их скопление в слоях земной коры. По составу размещения в земной коре ископаемые распределяют на оседлые, пластовые и гнездовые.
Геологическими запасами называют те полезные ископаемые, которые обнаружены в земле расчетными методами.
Балансовыми называют те запасы полезных ископаемых, которые по качеству соответствуют требованиям промышленности, а по количеству их добычу можно считать экономически выгодным.
Промышленными запасами считают то количество полезных ископаемых, которые возможно получить в процессе их добычи.
Земная кора на 99,5 процентов состоит из 14 химических элементов: кислорода — 49,13%, кремния — 26,0%, алюминия — 7,45%, железа — 4,2%, кальция — 3,25%, натрия — 2,4%, магния — 2,35%, калия — 2,35%, водорода — 1,0% и др.
Наибольший интерес для промышленности составляет сырье, которое наиболее часто встречается в земной коре и которое однородно по составу и свойствам (руды, песок, известняк, глина, вода, топливо, газ и др.).
Рудное сырье по своему назначению делится на:
- руды черных металлов;
- руды цветных металлов;
- руды редких металлов.
Руды черных металлов представляют собой магнитные, красные и бурые железняки.
Магнитный железняк содержит до 72% железа, остальное — силикаты. Эта руда обладает магнитными свойствами, очень плотная, трудно восстанавливается, черного цвета. Красный железняк содержит до 60% железа и такую же пустую породу. В буром железняке есть до 20 — 65% железа, все остальное — силикатная порода.
Руды цветных металлов отличаются наибольшим количеством полезного компонента. Так, медные руды делят на богатые и бедные. В богатых рудах количество меди более 6%, в бедных — от 4,5 до 2,0%.
Руды редких металлов, чаще всего, является монометаллами, в которых содержится хром, золото, платина и прочее, а также биметаллическими, такие как медно-молибденовые, свинцово-цинковые, или полиметаллическими, в которых есть свинец, цинк, медь, серебро, золото, никель, висмут, уран и т.д.
Нерудное сырье, либо минерально-химическое используется как для добычи различных неметаллов (серы, фосфора и др.), солей, минеральных удобрений, так и для строительных материалов. Наиболее важными видами нерудного сырья можно считать: самородную серу, апатиты, фосфориты, природные соли (калийные, поваренную соль, сода), а также алмаз, графит.
К строительным материалам можно отнести: гранит, диабаз, базальт, андезит, пемзу, туф, гипс, известняк, известь, глину, песок, щебень, песчаник и мрамор. Первое место в земной коре занимает кремний, второе — глина. В естественном виде, в строительстве, используются: мрамор, гранит, щебень, известняк, глина, гипс, базальт, диабаз. Другие материалы используют для производства цемента, бетона, кирпича, фарфора, фаянса, керамики, а также различных химических веществ.
Источник
Шкала Мооса (минералогическая шкала твёрдости) представляет собой качественную порядковую шкалу, характерезующую стойкость различных минералов к царапанию. Используется для определения относительной твердости образцов минералов.
Основана на способности более твердого материала царапать более мягкий материал.
Шкала содержит 10 минералов в качестве эталонных, упорядочивая их в порядке возрастания твердости от очень мягкого (тальк) до очень твердого (алмаз).
Все минералы из таблицы, кроме алмаза, относительно распространены и их легко или недорого получить.
— Тальк
— Гипс
— Кальцит
— Флюорит
— Апатит
— Ортоклаз
— Кварц
— Топаз
— Корунд
— Алмаз
Если минерал царапет эталон, значит его твердость — выше, если он царапается эталоном — ниже.
Шкала Мооса создана в 1812 году и названа в честь изобретателя немецкого геолога и минеролога Фридриха Мооса. С тех пор было изобретено множество различных методов определения твердости: метод Бринеля, Кнупа, Роквелла, Шора, Виккерса.
Определение твердости по Моосу — это относительное целочисленное сравнение устойчивости к царапинам.
Другие методы измерения твердости оперируют устойчивостью к вдавливанию. Для испытаний используется «Индентор» который вдавливается в исследуемый образец с тщательно измеренной силой. Затем размер или глубина выемки на образце и величина силы используются для расчета значения твердости. Поскольку в каждом из этих тестов используются разные аппараты и разные расчеты, их нельзя сравнивать напрямую друг с другом.
Шкала Мооса получила широкое распространение т.к. метод определения твердости прост в исполнении, недорог и люди быстро его понимают.
Несмотря на недостаточную точность, шкала актуальна для полевых геологов, которые используют её для грубой идентификации минералов когда исследуются легко идентифицируемые образцы или когда нет возможности использовать более сложные тесты.
Некоторые используют легкодоступные предметы для быстрого испытания. Например геолог может иметь карманный нож, которым можно определить является ли образец тверже или мягче чем значение 5-6,5 по Моосу.
1 — Карандаш
2 — Повареная соль
2-2,5 — Можно поцарапать ногтем
2,5-3 — Золото, серебро
3 — Медная манета
4-4,5 — Гвоздь
4-5 — Железо
5 — Стекло
5-6,5 — Лезвие ножа
6,5 — Стальной напильник
7 — Легко царапает стекло
7+ — Напильник из закаленной стали
8 — Наждачная бумага, минерал очень легко царапает стекло
9 — Минерал режет стекло
10 — Используется как стеклорез
Ниже представлена расширенная таблица веществ, минералов, драгоценных камней:
Вещество или минерал | Твердость по Моосу |
---|---|
Пирофиллит, молибденит | 1-2 |
Боксит, уголь | 1-3 |
Лимонит | 1-5 |
Лед, сахар, галлий, стронций, индий, олово, барий, таллий, свинец, графит | 1,5 |
Гипс, кальций | 1,5-2 |
Сера | 1,5-2,5 |
Сильвит, глауконит, кадмий, селен | 2 |
Каменная соль, киноварь, хлорит, висмут, янтарь | 2-2,5 |
Мусковит | 2-3 |
Серебро, золото, галенит, медь, биотит, слюда | 2,5-3 |
Алюминий, известняк, кальцит, борная кислота, нитрофоска | 3 |
Арагонит, витерит, ангидрит | 3-3,5 |
Жемчуг, латунь, мышьяк | 3-4 |
Серпентин | 3-5 |
Сфалерит, родохрозит, малахит, доломит, куприт, халькопирит, азурит, барит | 3,5-4 |
Сидерит, пирротин, доломит | 3,5-4,5 |
Флюорит, бронза фосфористая | 4 |
Мрамор | 4-5 |
Зубная эмаль, асбест, апатит, марганец, цирконий , палладий , обсидиан | 5 |
Титанит, монацит | 5-5,5 |
Нефрит, уранинит, ильменит, энстатит, керамогранит (полированный) | 5-6 |
Магнетит | 5-6,5 |
Нефелин, авгит, арсенопирит, актинолит, бустамит, кобальтит | 5,5-6 |
Родонит, диопсид, опал, железняк красный | 5,5-6,5 |
Титан, германий , ниобий , родий , уран | 6 |
Рутил, пирит, пренит, плагиоклаз, ортоклаз, амазонит, андезин, анортоклаз, бенитоит, гельвин, иридий | 6-6,5 |
Кремний | 6,5 |
Яшма | 6,5-7 |
Агат, цоизит, эпидот, касситерит, пиролюзит | 6-7 |
Марказит | 6-7,5 |
Гранит, танзанит, сподумен, оливин, жадеит, аксинит, хризопраз, жадеит | 6,5-7 |
Силлиманит, гранат | 6,5-7,5 |
Кварц, каменная галька, аметист, авантюрин, форстерит, осмий, силикон, рений , ванадий | 7 |
Турмалин, кордиерит, альмандин, борацит, кордиерит, данбурит | 7-7,5 |
Циркон, андалузит, эвклаз, гамбергит, сапфирин | 7,5 |
Изумруд , закаленная сталь, вольфрам, шпинель, берилл, бериллий, аквамарин, красный берилл, ганит, пейнит | 7,5-8 |
Топаз, Фианит | 8 |
Хризоберилл, александрит, холтит | 8,5 |
Керамогранит (неполированный) | 8,5 |
Корунд, рубин, сапфир, алунд, хром | 9 |
Муассанит, бор | 9,5 |
Карборунд | 9-10 |
Алмаз, карбонадо | 10 |
Источник
Минералами называют однородные в своей структуре и архитектуре части горных пород или даже метеоритов, прилетевших к нам из космоса. Все они образовываются из-за геологических процессов внутри планеты. На сегодняшний день известно около 5500 видов минералов, однако широко распространены лишь пара сотен. И, пусть таких и большинство, но все-таки не все из них имеют твердую форму. К примеру, самородную ртуть называют минералом. А нормальное состояние ртути – жидкость.
Занимается данным вопросом раздел геологии под названием минералогия. В данной статье мы поговорим о физических и химических свойствах минералов. Можно уточнить, что физические свойства минералов – это набор параметров, заметных и не заметных невооруженным глазом, с помощью которых можно охарактеризовать и отличить данные полезные ископаемые.
Излом
Данное физическое свойство описывает так называемый «рельеф», который образуется на поверхности минералов при их надломе, повреждении. Излом тесно связан со спайностью, о которой мы напишем ниже. Бывают зернистые, землистые, занозистые, раковистые, ровные, неровные и другие виды изломов.
Спайность
Она, в свою очередь, зависит от атомического строения вещества, его кристаллической решетки. Кристаллы вещества, под воздействием внешних сил, могут раскалываться в какие-то определенных направлениях (плоскости спайности). В частности, гипс и всякие слюды обладают весьма совершенной спайностью, так как раскалываются на тонкие пластиночки. Им, кстати, соответствует ровный излом. Также есть спайность просто совершенная (каменная соль) средняя (лабрадор, полевые шпаты), несовершенная (апатит, оливин) и весьма несовершенная (корунд, кварц, магнетит).
Прочность
Этот параметр показывает, сколь краткий (или длительный) срок объект может сопротивляться внешним разрушающим силам, и какую величину этих сил он может выдержать без деформации. Прочность различают динамическую, статическую и усталостную. Одним из самых прочных веществ называют хром, который содержат минералы хромшпинелидов, основные базальты и ультраосновные перидотиты.
Твердость
Свойства минералов под названием твердость отвечают за то, чтобы не дать инородному предмету проникнуть в структуру вещества. Существует шкала из десяти основных делений, разработанная Фридрихом Моосом. Это шкала твердости, где на первой позиции расположен тальк, который можно поцарапать даже ногтем. А на десятой – алмаз, являющийся самым твердым природным веществом и обладающим способностью резать стекло. Вот и сама шкала:
- тальк,
- гипс,
- кальцит,
- флюорит,
- апатит,
- ортоклаз,
- кварц,
- топаз,
- корунд,
- алмаз.
Очевидно, что если ваш материал не царапается кварцем, но его царапает топаз, значит, твердость по Моосу у данного материала примерно 7.5.
Плотность
Также известная, как удельный вес, плотность является отношением массы к объему (г/см3). Говоря простыми словами, чем выше плотность вещества, тем тяжелее будет одна единица его объема. Минеральным образованиям характерна весьма различная плотность. У золотого самородка, например, она достигает 19.3 г/см3, а плотность карбона (уголь) – 1.45 г/см3.
Оптические свойства минералов
Кроме чисто физических свойств, наши полезные ископаемые обладают еще и следующими оптическими свойствами: блеск (способность отражать свет), цвет (окрас может зависеть от состава, освещения, облучения и т.д.), цвет черты (цвет полосы минерала, натертой о фарфор), а также дисперсия, поляризация и преломление.
Прочие свойства
Данные характеристики минералов можно назвать особыми. Речь идет о радиоактивности, свечении, электрическим свойствам и магнитности.
Радиоактивность – данное определение дают веществам, при проверке которых радиометры указывают на повышенный радиационный фон. Чаще всего речь идет о радиоактивных химических элементах, вроде урана, тория и так далее.
Прочность и твердость далеко не всегда идут рука об руку. К примеру, алмаз, являющийся эталоном твердости, очень непрочен. Потому советуем не ронять бриллиантовые украшения. От таких нагрузок камни легко могут повредиться.
Свечение – также весьма интересное свойство. Оно заставляет светиться минералы при определенном воздействии, будь то раскалывание (триболюминесценция), действие ультрафиолета (фосфоресценция), или при нагревании (термолюминесценция).
Электрическим свойством называют способность минерала проводить через себя электричество.
Магнитностью, в основной массе, обладают минералы, имеющие в составе железо в составе оксида FeO. Это можно проверить с помощью обычного магнита.
Применение свойств
Описание и изучение свойств минералов максимально необходимо для их применения человечеством. Так, сверхтвердые минералы, вроде алмазных резцов, используются людьми в металлургии, ювелирной промышленности, токарном деле. Прочность понадобится веществам, используемым в архитектуре, производстве деталей и механизмов, и так далее. Зная плотность материала, можно рассчитать его необходимое количество для тех или иных операций. Электрические свойства пригодятся для создания проводников. Показатели излома и спайности позволят предугадать пути возможных деформаций материалов.
Таким образом, можно сказать, что знание физических свойств добываемых полезных ископаемых жизненно необходимо для максимально эффективного их использования на нужды человечества.
Источник
Здравствуйте, дорогие!
Сегодня я предлагаю Вам углубиться в геологию и узнать о таких понятиях как минерал и горная порода, и в чем их отличие.
Минерал
Минералы — понятие широкое. Но в целом минералами называют однородные по своему составу и строению части горных пород. Минералов в природе великое множество. Для изучения, минералы объединяют в группы по химическому составу и физическим свойствам.
Большинство минералов встречается в земной коре в твердом состоянии и их внешние признаки просто поражают — одни из них прозрачные, другие полупрозрачные, а третьи не пропускают свет вообще. Также разнообразна и их окраска, твердость, блеск и многие другие физические и химические свойства.
Горная порода
В отличие от минералов, горные породы чаще всего не однородны. Это как бы агрегаты, которые могут состоять из нескольких минералов. Структура и свойства горных пород в первую очередь зависят от того, на какой глубине и в каких условиях они образовались.
По условиям образования все горные породы делятся на три большие группы: магматические, осадочные и метаморфические.
Магматические горные породы берут своё начало глубоко в недрах Земли, на глубине 100 км. и более, а при извержении вулканов частично или полностью поднимаются на поверхность земли. Магматические горные породы содержат в себе такие минералы как кварц, гранит, топаз, турмалин и пр.
Осадочные горные породы образуются путём осаждения на дне морей, океанов, рек и других водоемов. Осаждаются как обломки скал, перенесенные реками в море через огромные расстояния, так и умершие морские организмы морей и океанов. Изучая осадочные породы и заключенные в них скелеты и раковины некогда живых животных, геологи устанавливают в какое время в том или ином участке Земли было море и когда на его месте образовалась суша. Таким образом, изучение осадочных пород помогает восстановить историю развития Земли.
Когда я училась в геологоразведочном университете, то помню как летом на практике мы ездили на один из подмосковных карьеров и находили там признаки бывшей морской жизни — море в тех местах было 2-3 миллиона лет назад. Порой это сложно представить!
И наконец, метаморфические горные породы образуются в результате изменения состава или свойств первоначальных горных пород. Как правило это возникает при тектонических движениях, когда большие массы пород, возникших на поверхности Земли могут быть перемещены в её глубины, а на глубине, под влиянием высоких температур и давления, начинает меняться и состав горных пород. Изменения эти происходят очень медленно, растягиваясь на десятки и сотни миллионов лет. Таким образом, например, известняк превращается в мрамор, а опал переходит в кварц.
Изучение горных пород и минералов
Процесс изучения горных пород достаточно долгий. Всё начинается с экспедиций, в которых геологи собирают образцы горных пород и заносят данные на топографическую карту. Затем уже в лабораториях производится подробный анализ и изучение образцов, благодаря которым далее делаются предположения о залежах полезных ископаемых. Такая у геологов работа — нужно иметь закаленное и тренированное тело и ум, обогащенный знаниями во многих областях науки, без которых немыслима современная геология.
С уважением,
Екатерина Лутохина (Napoleonka)
Источник
Железная руда – важный ископаемый продукт, который человечество стало добывать много столетий назад. С давних времён железо нашло широкое применение в бытовых и прочих условиях жизни человеческого общества. Одно из ключевых преимуществ и свойств железной руды – возможность изготовления стали, получаемой в процессе её плавки.
Руда железа может иметь различные свойства, минеральный состав, а также процентное соотношение примесей и металлов в зависимости от типа и места её разработки. Найти места добычи железорудных минералов с соответствующим техническим оснащением не представляется сложной задачей, поскольку железо составляет более 5% твёрдых залежей земной коры по всей поверхности планеты. Согласно Википедии и другим достоверным источникам, железная руда занимает четвёртое место по распространённости среди полезных ископаемых, добываемых в окружающем мире.
Тем не менее, найти этот металл в природе в чистом виде не представляется возможным – отыскать его можно в определённых количествах в большинстве известных типов и вида камня (горных пород). Минералы (железорудные) одни из наиболее выгодных в плане добычи. От характера происхождения железной руды зависит количественное содержание в ней железа.
Как выглядит руда железа и что собой представляет?
В качестве ключевого химического элемента железо входит в состав множества горных пород. Тем не менее, далеко не каждая такая порода может быть потенциальным сырьевым продуктом для добычи и разработки. Целесообразность разработки железных руд, как таковых, во многом зависит от процентного состава.
Его добычей плотно занялись более 3 тысяч лет назад, что обусловлено возможностью изготавливать на основе железа более качественных и прочных изделий в сравнении с бронзой и медью, которые стали добываться ещё раньше. Уже в те времена, мастера, работавшие с плавильнями, могли точно различать виды железной руды.
В настоящее время принято выделять несколько типов сырья, пригодного для последующей выплавки полезного металла:
- магнетиновый;
- магнетино-апатитный;
- магнетино-титановый;
- гидрогетит-гетитовый;
- гематито-магнетиновый.
Богатым считается месторождение железной руды с процентным составным содержанием железа 57%. Но, как уже было сказано выше, целесообразными могут быть разработки залежей, в которых руда содержит 26% этого полезного металла. В составе горных пород железо преобладает в виде оксидов. Остальные составляющие представляют собой фосфор, серу и кремнезёмы.
Существуют таблицы железной руды, в которых отражен её сырьевой, химический состав и процентное содержание железа. Если руководствоваться численными показателями большинства таких таблиц, то условно можно разделить ценные руды по степени их богатства и свойствам на 4 категории
- очень богатые – содержание основного металла более 65%;
- умеренно богатые – средний процент железа 60-65%;
- умеренные – от 45% и более;
- бедные – менее 45% добываемых полезных элементов в целом.
В зависимости от количества побочных примесей, входящих в состав разрабатываемого месторождения железа, требуется большее или меньшее количество энергии на переработку. От этого во многом зависит эффективность производства готовой продукции на основе железа.
Характер происхождения
Большая часть известных рудниковых типов была сформирована под влиянием трёх основных факторов. От них, собственно, зависят особенности и характеристики руды железа.
Магматическое формирование. Магматические составы формировались под воздействием высоких температур магмы либо при условии высокой активности древних вулканов. По сути, имели место естественные процессы перемешивания и переплавки горных пород.
Эта разновидность полезных ископаемых представляет собой кристаллические минеральные ископаемые соединения, отличающиеся высоким процентом содержания железа. Залежи магматических ископаемых, как правило, можно обнаружить в зонах старинного образования гористых местностей. Именно в этих местах расплавленные вещества подходили максимально близко к поверхностным слоям почвы.
Метаморфическое формирование. В процессе такого формирования образуются минералы осадочного типа. Суть этого процесса сводится к передвижению отдельных участков коры Земли при котором определённые пласты, богатые определёнными элементами, попадают под породы, залёгшие выше.
Полезные ископаемые, которые образовались при очередном перемещении, мигрируют ближе к земляной поверхности. Железная руда, которая образуется в процессе метаморфического формирования, как правило, имеет высокое процентное содержание полезных металлических соединений и располагается не слишком глубоко от поверхности. Один из наиболее распространённых примеров – железняк магнитный, содержащий в своём составе до 75% железа.
Осадочное формирование. В данном случае основные факторы этого типа формирования рудников – естественные силы природы, в частности ветры и вода. Пласты породы подвергаются разрушению и перемещению в низины – именно здесь они скапливаются, формируя отдельные слои. В качестве реагента выступает вода, которая выщелачивает исходные материалы. В ходе таких процессов формируются залежи бурого железняка, представляющего собой рассыпчатую, разрыхлённую массу с высоким содержанием минеральных примесей и процентным содержанием железа до 35-40%.
За счёт различной специфики образования метаморфических пород сырьё часто перемешивается внутри пластов с магматической породой, известняком и глиной. В одном и том же месторождении, обозначенном соответствующим знаком на карте, обнаруживаются различные по происхождению залежки, которые перемешаны между собой. Места, предположительно богатые осадочными железными рудами в этом случае определяются в ходе геологических разведочных мероприятий.
Основные свойства и типы. Из какой руды получают железо?
К наиболее распространённому типу принято относить красный железняк, основой которого служит гематитовый оксид. В его составе содержится минимум побочных примесей и свыше 70% железа.
Следующий по распространённости – бурый железняк (лимонит), представляющий собой оксид железа, содержащий в своём составе H2O. Как правило, в состав лимонита входит порядка четверти процентного содержания железа. В природе бурый железняк можно встретить в форме пористых, рыхлых пород, содержащих фосфор и марганец. В качестве пустой породы в руде содержится глина.
Магнитная руда железа содержит в своём составе магнитный оксид, свойства которого теряются в условиях сильного нагрева. В природе встречается намного реже вышеперечисленных пород и по процентному соотношению железа в некоторых случаях не уступает красному железняку.
Железняк шпатовый – рудная порода, содержащая сидерит с высоким содержанием глины в составе. Это весьма редкая порода, а за счёт малого содержания железа добывают его намного реже, особенно если речь идёт о промышленном применении.
Помимо оксидов существуют другие железорудные типы, в основу которых входят карбонаты и силикаты.
Географическое расположение ключевых месторождений
Все основные месторождения принято делить на:
- Метаморфогенные – кварцитовые залежи;
- Экзогенные – бурый железняк и прочие осадочные породы;
- Эндогенные – преимущественно титаномагнетитовые составы.
Подобные рудные залежи встречаются практически на каждом континенте. Большая часть железорудных залежей находится на территории стран СНГ, в частности это территория Казахстана, России и Украины. Достаточно большими запасами железорудных скоплений могут похвастать такие государства, как ЮАР, Индия, США, Австралия, Канада и Бразилия. Существуют карты месторождений железной руды, как в мировых масштабах, так и с более подробным указанием залежей на территории конкретного государства.
Значение железной руды и сферы, в которых она используется
По преимуществу все отрасли, в которых задействованы эти полезные ископаемые, связаны с металлургической сферой. По большей части руду железа используют при выплавке чугуна с использованием конверторной или мартеновской печи. В свою очередь чугун широко применим во многих промышленных отраслях.
Сегодня крайне популярен и активно изготавливается и другой сверхпрочный, антикоррозийный сплав – сталь, для чего также используются железорудные ископаемые. Это наиболее популярный промышленный сплав, который славится устойчивостью к коррозии и высокой прочностью.
Стальные и чугунные материалы применяют в следующих отраслях:
- ракетостроительная и военная промышленность, производство специальной техники;
- машиностроение, включая изготовление станков и прочих заводских механизмов;
- автомобильное производство (изготавливаются автомобильные рамы, элементы двигателей, корпуса и прочие механические узлы);
- добывающая промышленность (производство тяжёлого добывающего оборудования и прочей спецтехники);
- строительство – армирующие материалы, создание несущего каркаса.
Способы добычи
Методы и способы извлечения рудных ископаемых ресурсов из недр зависят от глубины, на которой залегает искомый материал. В этом контексте принято выделять три основных способа:
Скважинный метод (гидродобыча) – для работы таким способом специалисты бурят скважины, достигающие пластов пород. В образовавшиеся створы помещаются трубчатые конструкции, через которые мощной водной струёй производится дробление материала и её извлечение. Это наименее эффективный, косный и устаревший метод, который в наши дни используется достаточно редко.
Шахтенный метод – используется при условии, что пласты залегают более глубоко (до 900 метров). Прежде всего прорубаются шахтенные створы – от них по пласту разрабатываются штреки. Порода дробится и поступает на поверхность по специальным транспортёрам.
Карьерный метод – в отличие от скважинного, считается наиболее распространённым. Его используют для работы на средней глубине (до 300 метров). Для разработки применяются мощные экскаваторы и механизмы, дробящие породу. После дробления материал отгружают и транспортируют прямиком на обогатительный комбинат.
Как обогащаются железорудные материалы?
В силу существования различных типов руд по степени того, сколько железа содержится в руде, менее обогащённые материалы отправляются на специальные комбинаты, где они подвергаются сортировке, дроблению, сепарации и агломерации.
В целом можно выделить 4 основных метода рудного обогащения:
Флотация. Специально подготовленная пылеобразная масса погружается в H2O с добавлением воздуха и веществ, которые называются флотационными реагентами. Отсюда и название самого процесса – флотация. Они соединяют частицы железа с пузырьками воздуха и поднимает их на поверхность в пенистом виде. Пустые породы оседают на дне.
Магнитная сепарация. Самый распространённый способ, основанный на разнице воздействия магнетизма на различные составляющие рудной массы. Сепарация может проводиться в случае с мокрыми и сухими поро?