Метод поиска и разведки полезных ископаемых
21.05.03
Технология геологической разведки
Геологоразведочный факультет
Кафедра геофизических и геохимических методов поисков и разведки месторождений полезных ископаемых
Уровень образования
Форма обучения
Продолжительность обучения
Вступительные испытания
Математика, Физика, Русский язык
Бюджетные места
Места по договору платных услуг
Стоимость обучения
130000
руб. за семестр
Краткая характеристика профиля подготовки
В процессе освоения данной специализации обучающиеся знакомятся с физическими полями различного происхождения: окружающие нас естественные поля и искусственно формирующиеся при помощи специализированного оборудования. Исследование структуры физических полей позволяет решать задачи широкого круга, такие как изучение глобального геологического строения нашей планеты, поиск месторождений полезных ископаемых (нефть, газ, золото, алмазы, рудные месторождения и другие), изучение инженерно-геологического пространства участков под будущее строительство зданий и сооружений различного назначения, поиск водоносных горизонтов, мониторинг и оценка состояния геотехнических объектов и многое другое. Обучающиеся получают знания об особенностях распространения электромагнитного, акустического, магнитного, гравитационного и других полей, знакомятся с современной аппаратурой, применяемой для выполнения геофизических исследований, методикой обработки геофизической информации в новейших программных комплексах, способах построения физико-геологических моделей исследуемых объектов.
Причины выбрать данное направление
- Специалисты данной специальности востребованы на рынке геолого-геофизических исследований для решения различных геологических и технологических задач;
- Специалисты подготовлены к работе с современным оборудованием и программными комплексами, что повышает их конкурентоспособность;
- Специалисты получают информацию о регламентирующих документах и могут вести проектную документацию в различных сферах геологоразведочных и геофизических работ;
- Имеется возможность заниматься научной деятельностью во время обучения;
- Имеется возможность включенного обучения в зарубежных университетах-партнерах с выдачей дипломов международного образца.
Основные читаемые дисциплины
- Электроразведка;
- Сейсморазведка;
- Радиометрия и ядерная геофизика;
- Геофизические исследования скважин;
- Интерпретация гравитационных и магнитных аномалий;
- Физика горных пород;
- Разведочная геофизическая аппаратура;
- Комплексная интерпретация данных сейсморазведки и ГИС;
- Методика и техника полевых сейсморазведочных работ;
- Физика Земли.
Профессиональные навыки выпускника
- Выделение в геофизических полях элементов залегания геологических тел;
- Выявление закономерных признаков месторождений нефти и газа, золота, угля и др. полезных ископаемых на основе геофизических исследований;
- Выполнение полевых геофизических исследований с применением современного оборудования;
- Обработка геофизической информации в специализированных программных комплексах;
- Построение карт и разрезов геофизических полей;
- Составление технических отчетов по результатам геолого-геофизических исследований.
Карьерные перспективы
Выпускники данной специализации могут работать в должностях:
— инженер-геофизик, ведущий инженер, горный инженер в компаниях, занимающихся поиском и разведкой месторождений нефти и газа: ПАО «Газпром», ПАО «НК «Роснефть», ПАО АНК «Башнефть», АО «Южморгеология» др.;
— инженер-геофизик, ведущий инженер, горный инженер в компаниях, занимающихся поиском и разведкой рудных месторождений: ПАО «ГМК «Норильский Никель», ООО «Геотехпро», ПАО «Полюс», ООО «ТехноТерра» и др.;
— инженер-геофизик, горный инженер в компаниях, занимающихся геолого-геофизическими исследованиями под гражданское строительство: ООО «Инжгео», ООО «Спецгеосервис», ООО «Фертоинг» и др.;
— инженер 1 и 2 категории, ведущий инженер в научно-производственных организациях: ФГБУ «ВСЕГЕИ», ОАО «МАГЭ», ФГБУ «ВНИИОкеангеология» и многие другие.
Известные выпускники
Горный инженер-геофизик
Санкт-Петербургский горный институт
1952-1957 гг. — начальник геофизического участка, геофизик, старший техник-геофизик шахты, инженер-геофизик в геофизической мастерской рудоуправления, главный геофизик шахты, старший инженер-геофизик геофизического отдела рудоуправления, старший инженер-геофизик геологического управления предприятия «Висмут» (ГДР).
1957-1969 гг. — заведующий проблемной геофизической лабораторией Ленинградского горного института имени Г. В. Плеханова, инженер, младший научный сотрудник, старший научный сотрудник лаборатории, доцент кафедры Геофизических методов разведки месторождений полезных ископаемых (ГФХМР).
1981-1986 гг. — декан вечернего факультета Ленинградского горного института имени Г. В. Плеханова
1986-1991 гг. — заведующий кафедрой ГФХМР.
1991-2005 гг. – профессор кафедры ГФХМР.
Под его руководством выполнены и внедрены в производство научные разработки поисков и разведки руд на основе геофизических данных, непрерывной радиомеханической схемы обогащения руд; разработан и внедрен метод дипольного индуктивного профилирования с амплитудно-фазовыми измерениями.
Генеральный директор
ООО «ТехноТерра»
В 1983 году окончил Ленинградский горный институт имени Г.В. Плеханова по специальности «Геофизические методы поисков и разведки месторождений полезных ископаемых», присвоена квалификация горного инженера-геофизика.
В 1995 г. стал кандидатом технических наук.
Генеральный директор ООО «ТехноТерра» — компании, занимающей геологическими, геофизическими, экологическими и другими видами исследований для строительства, ведущий специалист в области радиометрических и ядерно-геофизических методов разведки.
Дополнительные возможности при обучении
- Возможность изучать иностранные языки;
- Возможность изучать и применять современную геофизическую аппаратуру;
- Выполнять научные исследования в области геофизических исследований;
- Возможность изучать отдельные дисциплины на иностранном языке;
- Возможность пройти курс лекций приглашенных и зарубежных профессоров;
- Возможность пройти военную подготовку.
Сотрудничество с партнерами
История кафедры, открытия и достижения
1923 г. — открытие первого научного геофизического учреждения – Института прикладной геофизики, с опытной геофизической станцией в пос. Кавголово.
1927 г. — Горным институтом выполнены первые сейсморазведочные работы.
1928 г. — появилась специальность «Геофизические методы поисков и разведки месторождений полезных ископаемых».
1934 г. — Создание кафедры геофизических методов поисков и разведки месторождений полезных ископаемых.
1936 г. — Создание А.А. Логачевым метода аэромагнитной съемки.
1953 г. — создан геофизический факультет. Первым деканом ГФФ стал выпускник специальности «Геофизические методы поисков и разведки месторождений полезных ископаемых» 1930 года А.Ш. Усманов.
1956 г. — Создание проблемной геофизической лаборатории, а также создание первых студенческих полевых геофизических партий.
1995 г. — расформирование геофизического факультета. Передача кафедры геофизических и геохимических методов поисков и разведки МПИ — в состав геологоразведочного факультета.
К 200-летию Горного института было подсчитано, что ЛГИ подготовил более 3 000 горных инженеров-геофизиков. Из них примерно каждый десятый стал кандидатом, а каждый сотый — доктором наук.
Ученые-геофизики Горного института внесли неоценимый вклад в развитие теоретических основ методов разведочной геофизики и технологий их практического применения при решении широкого круга геологических задач.
В настоящее время сотрудники кафедры занимаются научными исследованиями по изучению особенностей распространения Вятского водоносного горизонта в Калининградской области с целью обоснования шахтного строительства рудника калийных солей.
Так же сотрудники кафедры занимаются исследованием памятников архитектуры города Санкт-Петербурга с целью выбора объектов, нуждающихся в проведении реставрационных работ.
В настоящее время ведутся математическое и физическое моделирование геологических объектов методами импульсной электроразведки и сейсморазведки для решения различных геологических и технологических задач в условиях городской застройки.
Контакты кафедры
Учебный центр № 1
Источник
СЕЙСМОРАЗВЕДКА — геофизический метод геологоразведки, основанный на изучении распространения в земной коре упругих (сейсмических) волн, вызванных взрывом или ударом. Упругие волны, распространяясь во все стороны от источника в толще земной коры, попадают на границы раздела, изменяют свое направление и динамические свойства, при этом образуются новые волны.
На пути следования волн размещаются пункты приёма и регистрации сигналов — сейсмоприемники. Измеряя время распространения волн, и изучая характер колебаний, можно определить глубину залегания и форму тех геологических границ, на которых произошло преломление или отражение волны, а также судить о составе горных пород, через которые волна прошла на своем пути.
Пункты приёма, применяемые для регистрации волн, образуют расстановку. Расстановки имеют форму прямой линии (2D-сейсморазведка) или блока параллельных приёмных линий (3D-сейсморазведка). Графики записанных колебаний группируются в сейсмограммы и анализируются.
Упрощенная схема проведения наземных сейсморазведочных работ:
1 — место взрыва; 2 — сейсмоприёмники; 3, 4 — отраженная волна; 5 — сейсмостанция.
Упрощенная схема проведения морских сейсморазведочных работ.
Сейсмические методы находят широкое применение при решении геологических задач и занимают ведущее место среди геофизических методов, применяемых при поисках месторождений нефти и природного газа, рудных месторождений и других полезных ископаемых, а также в инженерной геологии.
Сейсморазведка подразделяется:
- — по стадии геологоразведочного процесса — региональная, поисковая и детальная;
- — по решаемым задачам — глубинная, структурная (нефтегазовая) и инженерная;
- — по условиям ведения работ — наземная, морская, скважинная;
- — по размерности — 1D (в стволе скважины), 2D (с расстановкой
пунктов возбуждения и приема вдоль линейного профиля) и 3D (с размещением пунктов приема по площади);
- — по типу источника — взрывная, вибрационная и невзрывная импульсная.
Гравиразведка (или гравиметрия) — геофизический метод, изучающий изменение ускорения свободного падения в связи с изменением плотности геологических тел. Гравиразведка активно применяется при региональном исследовании земной коры и верхней мантии, выявлении глубинных тектонических нарушений, поиске полезных ископаемых (преимущественно рудных), выделении алмазоносных трубок взрыва. Высокоточные гравиметрические измерения используются для определения рельефа местности, так как с увеличением превышений растет мощность осадочных пород над уровнем моря. Гравиразведка позволяет определять литологию магматических пород, поскольку с ростом основности возрастает и концентрация плотных железистых соединений. Гравиметрия занимается изучением гравитационного поля Земли. Локальные вариации этого поля, связанные с плотностными неоднородностями в пределах земной коры, используются для определения положения рудных тел. Полагают, что рельеф земной поверхности и плотностные изменения внутри земной коры с глубиной взаимно компенсируются, поэтому удовлетворительная корреляция между гравитационными аномалиями протяженностью 100-1000 км и рельефом не наблюдается.
Гравиметрическая или гравитационная разведка — геофизический метод исследования строения литосферы, поисков и разведки полезных ископаемых, базирующийся на изучении гравитационного поля Земли. Основным измеряемым параметром этого метода является ускорение свободного падения. Хотя поле силы тяжести ученые изучают давно, например, Г.Галилей в 1590 г. первый получил ускорение свободного падения, наблюдая за падением тел, а М.В. Ломоносов разработал для его измерения идеи пружинного и газового гравиметров, однако лишь в 30-40-х годах XX столетия необходимая точность измерений была технически реализована в гравиметрах, маятниковых приборах, а также вариометрах и градиентометрах. Эти приборы предназначены для измерения ускорения свободного падения и его градиентов.
По технологии работ и типу носителя аппаратуры гравиразведку подразделяют на полевые (наземные), морские, воздушные, подземные и скважинные гравиметровые, а также вариометрические наблюдения.
По решаемым геологическим задачам и масштабу съемок различают региональную гравиразведку, проводимую на суше и море в масштабах 1:200000 и мельче, предназначенную для получения сведений о глубинном строении крупных территорий, и детальную (поисково-разведочную), выполняемую в масштабах от 1:100000 до 1:10000, направленную на выявление структур, перспективных на те или иные полезные ископаемые, поиск и разведку месторождений.
Магниторазведка
Магнитометрическая или магнитная разведка (магниторазведка) — это геофизический метод решения геологических задач, основанный на изучении магнитного поля Земли. Многие горные породы и руды обладают магнитными свойствами и способны под воздействием этого поля приобретать намагниченность и создавать аномальные или вторичные магнитные поля. Выделение этих аномальных полей из наблюденного или суммарного геомагнитного поля, а также их геологическое истолкование является целью магниторазведки.
От других методов разведочной геофизики магниторазведка отличается наибольшей производительностью, особенно в аэроварианте. Магниторазведка является эффективным методом поисков и разведки железных руд. Однако ее широко применяют и при геологическом картировании, структурных исследованиях и поисках других полезных ископаемых.
Наземная магниторазведка применяется нами при решении следующих задач:
1. Поиски и разведка железорудных месторождений. Исследования начинаются с проведения аэромагнитных съемок.
Железорудные месторождения выделяются очень интенсивными (сотни и тысячи нТл) аномалиями. Детализация аномалий
проводится наземной съемкой. При этом ведется не только качественная, но и количественная интерпретация, т.е. оценивается
глубина залегания магнитных масс, простирания, падения, размеры железосодержащих пластов, а иногда по интенсивности намагничения
даже качество руды. Наиболее благоприятны для разведки магнетитовые руды, менее интенсивными аномалиями выделяются
гематитовые месторождения.
2. Магниторазведка применяется также при поисках таких полезных ископаемых, как полиметаллические, сульфидные, медно-никелевые, марганцевые руды, бокситы, россыпные месторождения золота, платины, вольфрама, молибдена и др. Это оказывается возможным благодаря тому,
что в рудах в качестве примесей часто содержатся ферромагнитные минералы или же они сами обладают повышенной магнитной восприимчивостью.
Источник
Лекция №17
Задачи, методы поисков и разведки месторождений полезных ископаемых
План:
I. Стадии поисковых работ.
1. Региональное геологическое изучение.
2. Геологосъемочные работы.
3. Поисковые работы.
4. Поисково — оченочные работы.
II. Стадии разведочных работ.
1. Предварительная разведка.
2. Детальная разведка.
3. эксплуатационная разведка.
4. Доразведка.
Ключевые слова: Съемка, поисковые, разведка, региональное, стадия, масштабы, геофизическое, исследование, оценочные, элементы геологических тел, поисковые предпосылки, поисковые признаки, критерии, прогнозные ресурсы, категории запасов.
Геологическое строение территорий (района). Месторождений определяется в процессе проведения геологоразведочных работ. Геологическая съёмка и поиски являются составной частью этих работ, которые в целях рационального и экономичного ведения выполняется по 8 стадиям.
1) Региональное геологическое изучение
а) региональные геолого-геофизические исследования масштаба 1:1000000
б) регионально — геофизические, геолог- съёмочные, гидрогеологические и инженерно геологические работы масштаба 1:200000.
2) Геологосёъмочные работы масштаба 1:50000-1:25000
3) Поисковые работы
4) Поисково-оценочные работы
5)Предварительная разведка
6) Детальная разведка
7)Эксплуатационная разведка
8) Доразведка
9) Эксплуатационная разведка
Последние 4 стадии касаются разведочных работ. Главной задачей геологической съёмки любого масштаба является составление геологической карты, графически отображающей элементы геологических тел, фиксируемых на земной поверхности или определённом глубинном срезе. Последний, может совпадать с подошвой или кровлей стратиграфического горизонта или поверхностью какого-нибудь геологического образования.
В процессе геологической съёмки и анализа составленных геологических карт выявляют благоприятные для рудообразования факторы, которые используют в качестве поисковых предпосылок. К ним относятся климатические, стратиграфические, геофизические, геохимические, геоморфологические, магматические и другие показатели. Всё это указывает на возможность обнаружения месторождений полезных ископаемых.
Поисковые признаки — это локальные факторы, прямо или косвенно указывающие на присутствие полезных ископаемых. Геологическое картирование масштаба 1:50000 сопровождается общими поисками полезного ископаемого, которые можно ожидать исходя из благоприятных геологических предпосылок. Общей задачей поисков являются обнаружение и геолого-экономическая оценка месторождений полезных ископаемых.
Методы поисков разнообразны и применяются обязательно в комплексе с учётом ландшафтных и других условий и видов полезных ископаемых. Возможности их применения обусловлены местом проведения поисков по отношению к земной поверхности. Они могут вестись из космоса, воздуха, скважин и горизонтов подземных горных выработок.
Наземные методы являются наиболее достоверными, разнообразными и широко распространёнными в практике геологоразведочных работ. К ним относится крупномасштабное картирование, геохимическое, геолого-минералогические, геофизические и горно-буровые методы.
Горно-буровые методы самые достоверные из других поисков методов. Они позволяют определить в первом приближении геолога — структурные условия локализации тел полезных ископаемых, их морфологию, размеры и вещественный состав, проследить изменчивость этих параметров, произвести оценку прогнозных ресурсов и подсчёт запасов по категории С2.
Поисковые работы проводятся на перспективных площадях в пределах известных и потенциальных рудных полей, а так же бассейнов осадочных полезных ископаемых. Поисковые работы проводятся комплексом перечисленных методов, исходя из ландшафтных и геологических особенностей расположения месторождений, вида полезных ископаемых и его промышленно — генетического вида. В результате работ составляются в масштабе от 1:25000 до 1:5000 и разрезы, оценивающие прогнозные ресурсы полезного ископаемого по категории Р2, а на хорошо изученных участках — по категории Р2. Поисково-оценочные работы выполняются на участках, получивших положительную оценку при общих поисках или поисковых работах и по заявкам первооткрывателей. На этой стадии определяется геолог — промышленный тип месторождения, ориентировочно m его контур в плане — с экстракцией на глубину, что даёт основание подсчитать запасы категории С2 и оценить прогнозные ресурсы полезного ископаемого по категории Р2.
В результате проявление или отбраковывают, или излагаются технико-экономические соображения о перспективах выявленного месторождения, позволяющие принять обоснованное решение о целесообразности и сроках проведения предварительной разведки
Разведка месторождений полезных ископаемых. Цель разведки — выявление промышленных месторождений полезного ископаемого, получение разведанных в недрах запасов минерального сырья и других данных, необходимых и достаточных для рационального и последующего функционирования горнодобывающих и перерабатывающих предприятий.
Этой цели на каждом этапе экономического и социального развития страны отвечают общие задачи.
Стадии разведки. Разведочные работы более трудоёмкие и дроргостоящие, чем поисковые. Выделяются 3 стадии разведки: 1) предварительная; 2) детальная 3) эксплутационная и 4)доразведки (после эксплутационной разведки). Предварительная разведка проводится после поисково-разведочной стадии и продолжает их на более высоком уровне для получения достоверной информации, способной обеспечить надёжную геологическую, технологическую и экономически обоснованную оценку промышленной значимости месторождения. На этой стадии уточняются геологическое строение месторождения, общие его размеры и контуры. Составляются крупномасштабные (до 1: 500) геологические карты.
Основным направлением является разведка месторождения на глубину до горизонтов, доступных для разработки (путём закладки буровых скважин, подземными горными выработками геофизические исследования, отбираются технологические породы для лабораторных испытаний). Выясняются морфология тел полезных ископаемых, их внутренние строение, условия залегания и качественных. Кроме того, изучают гидрогеологические, инженерно — геологические, горно-геологические и другие природные условия, влияющие на вскрытии и разработку месторождения. Такая изученность должна обеспечить возможность подсчёта запасов по категории С1 и С2. По результатам предварительной разведки разрабатываются временные кондиции, и составляется технико-экономический доклад о целесообразности промышленного освоения месторождения и проведения на нём детальной разведке.
Детальная разведка проводится на месторождениях, положительно оценённых предварительной разведкой и намеченных к промышленному освоению в ближайшие 5 -10 лет. Она подготавливает месторождения для передачи в промышленное использование в соответствии с требованиями классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. По результатам детальной разведки составляется технико-экономическое обоснование постоянных кондиций. Согласно утверждённым кондициям выполняется подсчёт запасов полезного ископаемого с представлением его в Государственную комиссию по запасам при Министерстве геологии РУз.
Месторождения с утверждёнными запасами в требуемых количествах предаются в промышленное освоение отраслевым министерством. Доразведка разрабатываемого месторождения сосредотачивается на менее изучаемых участках: глубоких горизонтах, телах или залежах. Эксплуатационная разведка начинается с момента организации добычи полезных ископаемых и продолжается в течение всего период разработки месторождения. По отношению к добычным работам она может быть опережающей или сопровождающей. Здесь уточняются контуры тел полезных ископаемых, их условий залегания, внутреннее строение, качественная характеристика и количество запасов, пространственное положение промышленных типов и сортов, руд гидрогеологические, горно-геологические и другие факторы разработки месторождений.
Технические средства разведки. Это канавы, траншеи, расчистки, шурфы (поверхностные) и штольни, шахты квершлаги, штреки, рассечки (подземные) и буровые скважины и геофизические методы разведки. Наиболее информационными являются горные выработки, пройденные вкрест простирания рудоносных структур тел и залежей (канавы, шурфы) и другие выработки (траншеи, штреки и др.) пройденную по простиранию и падению рудных тел залежей позволяет проследить по эти направлениям изменчивость их морфологии качественного состава. Шахты с целью разведки проходят редко, чаще их назначение совмещается с отбором больших объёмных технологических проб для заводских испытаний или пробной эксплуатацией. Это так называемые разведочно-эксплуатационные шахты. Буровые разведочные скважины являются универсальным, техническим средством разведки. При вращательном бурении обеспечивается получение керна (ненарушенного столбика горной породы внутри трубы). Такое бурение называется колонковым. Что является основным видом разведочного бурения на рудных месторождениях. Скважины колонкового бурения могут быть вертикальными, наклонными и горизонтальными. Выбор бурового агрегата и конструкции буровой вышки зависит в основном от проекторной глубины разведочных скважин и условий (станки 300 м, ЗиФ).
Система разведки факторы, влияющие на их выбор. Изучение геологических свойств месторождений на разведочных стадиях проводится с применением большого объёма буровых скважин и горных выработок.
1. Линейное подсечение. Это совокупность отдельных пресечений рудного тела скважинами и горными выработками по одному из 3 направлений (мощь, простирание, падение). Наиболее информационным является направление простирания рудного тела, совпадающее с её мощностью. Получение разведочных данных по 3 направления позволяет оценить объёмную изменчивость геологических свойств месторождений. Провести графическое и объёмное моделирование, построив системы поперечных и продольных разрезов, погоризонтальных планов и блок- диаграмм.
2. Группа буровых систем является универсальной, экономии обеспечивает получение полной информации на месторождениях, имеющих значительные размеры тел полезных ископаемых.
3. Группа горных систем. Здесь выделяют системы канав, шурфов, разведочных шахт.
4. Группа горно-буровых систем характеризуется применением в различных сочетаниях горных выработок и буровых скважин.
Факторы, влияющие на выбор систем разведки, подразделяются на геологические, горно-технологические и географо-экономические: а) Основной фактор – геологический – это структурно – морфологические особенности месторождения (формы, размеры, строение); б) горно-технологические факторы обуславливают способы вскрытия и технологию разработки месторождения, исходя из горно-геологических, гидрогеологических условий месторождения; в) географо-экономические факторы оказывают наибольшее влияние на выбор разведочных систем в трудоспособных или отдалённых районах с суровыми климатическими условиями, со слабым развитием производительных сил.
Методы разведки:
Основными методами разведки являются:
1. Детальное геологическое картирование
2. Линейные подсечения тел полезных ископаемых системами буровых скважин и горных выработок.
3. Геофизические исследования в горных выработках и скважинах.
4. Геохимические и минеральные исследования.
Геологическое картирование производится на топографической основе масштаб от 1:10000 до 1:500 при этом на геологическую карту наносится привязка обозначений, разведочные скважины ( при помощи теодолитных ходов и геометрического нивелирования) отмечается маркирующие горизонты, контуры тел, элементы технологических нарушений и т.д.
Линейные подсечения тел полезных ископаемых осуществляются либо разведочными системами буровых скважин, либо системами горно-разведочных выработок. Ценной для разведки является геологическая информация, получаемая в процессе проходки разведочных выработок и бурения скважин.
Геофизические исследования в скважинах и горных выработках являются универсальным, по комплексу решаемых задач. Они используются при коррекции геологических неоднородностей. Широко применяется «каротаж», который основан на воздействии локальных естественных и искусственно вызванных физических полей внутри скважин на специальный зонд в датчиках которого возникают сигналы, предающиеся по кабелю к регистрационным и обрабатывающим наземным приборам. Определяется самопроизвольной поляризацией, кажущиеся сопротивлений, радиоактивность пород в разрезе скважины (галса каротаж), изменения магнитного поля по вертикали, изменение теплового режима (термический каротаж) и др.
Геологические исследования производятся с целью увязки рудопродуктивных зон, оценки рудоносности глубоких горизонтов и др. Минералогические исследования направлены на решение следующих задач:
1. Определение полного минерального состава руд и околорудных пространств
2. Выделение по особенностям минерального состава, текстурам и структурам руд их природных типов.
3. Изучение минералогической зональности в дополнение к геохимической.
Контрольные вопросы:
1. Какие задачи геологической съёмки месторождения?
2. Для чего производится детальная разведка месторождения?
3. Что такое — рудное тело, рудоносная структура?
4. Поперечный и продольный разрез месторождений?
5. Что даёт геологические информации при проектировании разработок месторождения?
Литературы:
1. Якушева А. Ф. «Общая геология». М. Недра 1988.
2. Мильнучук В. И. «Общая геология». М. Недра 1989.
3. Ершов В. В. «Основы геологии». М. Недра 1986.
4. Иванова М. Ф. «Общая геология». М. Недра 1974.
5. Панюков П. Н. «Основы геологии». М. М. Недра 1978.
Источник