Один из методов обогащения полезных ископаемых

Один из методов обогащения полезных ископаемых thumbnail

Горнодобывающая промышленность никогда не обходится без такого метода обработки полезных ископаемых, как обогащение. Это процесс, при котором концентрация ценного сырья в добытой породе увеличивается, что повышает эффективность его использования. Например, железная руда представляет собой комплекс минералов, содержание железа в которых может колебаться от 10 до 60%.

Чтобы очистить сырье от примесей и прибегают к процессу обогащения, после которого эти цифры увеличиваются до 70-90%. Это первичная обработка твердых полезных ископаемых. Прежде чем приступить к нему, руду необходимо подготовить. В зависимости от вида сырья, его дробят, обжигают и промывают. Дальнейшее производство зависит от физико-химических свойств.

Основы обогащения полезных ископаемых

Исходя из минерального состава сырья, которое требует обогащения, существует большое количество способов его очищения. Принцип действия заключается в разделении ценной породы и пустой, благодаря чему концентрация полезного вещества в переработанном материале значительно повышается.

Обогащение полезных ископаемых в горнодобывающей промышленности

Есть несколько видов обогащения:

  • электрическое,
  • гравитационное,
  • магнитное,
  • радиологическое
  • химическое.

Его выбор зависит от плотности материала, его магнитной или электрической восприимчивости, адсорбционной способности, химического состава, агрегатного состояния и кристалло-химической структуры. Также влияет и уровень взаимодействия пустой и ценной породы, насколько сильна их связь. Часто возникают случаи комбинирования этих методов, для повышения эффективности работы. Обогащение может проводиться в несколько этапов, когда в пустой породе остаются маленькие частички полезного ископаемого.

Первое промышленное применение обогащения сырья датируется 1700 годом, когда для добычи золота, оно размачивалось и фильтровалось. Но различные методы существовали в примитивном виде еще до нашей эры.

Гравитационное разделение

Основа обогащения полезных ископаемых этого типа лежит в распределении материалов по плотности, относительно среды, в которую помещается взвесь. Самым распространенным в горнодобывающей промышленности является применение гидравлического прибора. Пласт полезных ископаемых постепенно поддается воздействию турбулентного потока жидкости. В результате этого, минералы разрыхляются и разделяются в зависимости от плотности.

Обогащение полезных ископаемых в горнодобывающей промышленности

1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина”> Pис. 1. Cхема обогащения оловянной руды c предварительной гидравлической классификацией: 1 – бункер; 2 – питатель; 3 – грохот; 4 – конвейер; 5 – дробилка; 6 – конвейерные весы; 7 – отсадочные машины; 8, 9, 10 – спиральный, гидравлический, реечный классификаторы; 11 – гидроциклон; 12 – концентрационный стол; 13 – сгуститель; 14 – мельница; 15 – контактный чан; 16 – флотационная машина.

Легкая фракция быстро поднимается на поверхность, а в дальнейшем собирается. Этот процесс не позволяет достигнуть высокой точности сепарации, поэтому сейчас частота его применения снизилась. Преимущество гравитационного обогащения в его себестоимости – она достаточно низкая. Но, из-за использования воды, он может стать причиной неблагоприятной экологической ситуации.

Гравитационное обогащение применяется почти для каждого вида переработки полезных ископаемых. Предварительно необходимо провести несколько подготовительных этапов. Например, дробление сырья в грохотах, благодаря чему можно отделить небольшое количество пустой породы. Применяется и вымачивание, опрыскивание, обжигание. Это значительно увеличивает его эффективность.

Тяжелые среды

Самым простым является обогащение в тяжелых средах, где нет потока жидкости, а разделение происходит под воздействием гравитации. Легкие частицы отделяются от тяжелых на несколько фракций. В качестве жидкостей может выступать раствор хлоридов кальция или цинка, органические смеси.

Обогащение полезных ископаемых в горнодобывающей промышленности

Концентрационные столы

Эталоном гравитационного разделения полезных ископаемых является обогащение на концентрационных столах. Первое упоминание об этом методе можно найти еще в трудах Геродота, который описывал древне-грецкие способы добычи золота. Установка представляет собой стол с выточенными горизонтальными желобами (рифлями), наклоненный под углом 1-10 градусов. Сверху подается напор суспензии, жидкости с дробленым полезным ископаемым. Под воздействием силы тяжести, частички оседают в желобах, а пустая порода остается в потоке. Недостаток этого способа в том, что для эффективного разделения сырья, руду необходимо раздробить до 0,1-13 мм. В противном случае большое количество пустой породы попадет в отсадку.

Обогащение полезных ископаемых в горнодобывающей промышленности

Сепарация на шлюзах

Для обогащения рассыпных руд (золота, вольфрама, олова и других редких металлов), используют сепарацию на шлюзах. Для разделения используется специальный материал с шероховатым покрытием – трафарет, в котором и задерживается ценное сырье. Жидкость может подаваться на ступенчатую и желобную ровную конструкцию, в зависимости от вида полезного ископаемого.

Обогащение полезных ископаемых в горнодобывающей промышленности

Интересно, что этот вид обогащения появился очень давно, и стал причиной появления легенды о золотом руно. В древности шкуры молодых овец смазывали жиром, и укладывали на дно желобов, куда подавалась суспензия золотоносного песка. Ценный металл задерживался в ворсинках, а жир не позволял ему двигаться вместе с потоком.

Винтовые сепараторы

Жидкость, в которую помещена взвесь полезного ископаемого, движется по вертикальной оси, по винтовому желобу. Здесь на породу воздействует две силы – гравитационная и центробежная. В результате этого процесса, тяжелые частицы перемещаются вдоль внутреннего борта желоба, а легкие по его внешней части. По завершению движения жидкости, они попадают в разные отсеки, и отправляются на дальнейшую переработку или утилизируются.

Обогащение полезных ископаемых в горнодобывающей промышленности

Центробежный концентратор

Этот способ является наиболее современным и эффективным на сегодня среди гравитационных. Его особенность в том, что он позволяет отделить минимальные частички полезного ископаемого от пустой породы. Благодаря воздействию центробежной силы, удается увеличить массу частиц, в результате чего и происходит сепарация. Для осуществления этого метода используется специальная установка – гидроциклон. В нем происходит вихревое вращение жидкости, благодаря чему образуется центробежная сила, заставляющая породу разделяться на фракции.

Обогащение полезных ископаемых в горнодобывающей промышленности

Воздушная сепарация (подвид гравитационной)

Это один из самых старых способов обогащения полезных ископаемых, но его не часто применяют в промышленных целях. Использование воздушной сепарации было разработано для районов, которые не обеспечены достаточным количеством водных ресурсов, из-за чего их использование не рентабельно. Одно из значительных преимуществ этого способа – минимальный вред окружающей среды.

Принцип действия воздушной сепарации в том, что струя воздуха, подающаяся под давлением, разрушает породу, высвобождая необходимое сырье. Это подходит для железных руд, где плотность пустого сырья значительно ниже, чем металла. Впервые его применили в Мексике, для обработки золотоносной руды, где воздушная сепарация показала хороший результат. Существенным недостатком этого метода является климатическая зависимость – влажность окружающей среды не должна превышать 5-6%.

Читайте также:  Налог на полезные ископаемые в мире

Магнитное обогащение

Метод магнитного обогащения используется только для руд, которые имеют в составе магнитное сырье (железных, марганцевых, медно-никелевых руд и руд редких металлов). Его проводят в мокрой и сухой среде, в зависимости от плотности и гидрофильности пустой породы. Иногда в качестве первичной обработки сырья используется обжиг – он повышает его магнитные свойства.

Преимущество этого метода в низкой себестоимости. Устройства для сепарации долговечны, не требуют постоянного обслуживания и автоматизированы. К тому же он не оказывает негативного влияния на экологию местности. Учитывая постоянное развитие технологий, эффективность магнитной сепарации значительно увеличивается.

Обогащение полезных ископаемых в горнодобывающей промышленности

Руды, подлежащие магнитному обогащению:

1. Сильномагнитные:
1.1. магнетит,
1.2. франклит,
1.3. пиротин,
1.4. мартит

2. Магнитные:
2.1. ильменит,
2.2. гематит,
2.3. хромит

3. Слабомагнитные:
3.1. глауконит,
3.2. доломит,
3.3. пирит.

4. Не магнитные:
4.1. нерудные ископаемые.

Обогащение проводится в магнитном сепараторе, где разделяется смесь минералов и металлических включений. Он может быть роторным, барабанным и валковым, но принцип разделения остается одинаковым. При движении магнитной головки, восприимчивый материал движется по направлению к полю, а пустая порода не меняет своей траектории. Существуют приспособления, которые скомбинированы с грохотами, для вибрационного дробления материала.

Магнитная сепарация впервые была изобретена еще в 1792 году, но ее промышленное использование началось только в 19 веке.

Электрическое обогащение

Одним из самых новых и эффективных методов является электрическая сепарация сырья. Но он подходит только для полезных ископаемых, которые восприимчивые к воздействию тока.

Способы электрической сепарации материала:

  1. Электрическая.
  2. Электростатическая.
  3. Диэлектрическая.
  4. Трибоэлектрическая.
  5. Трибоадгезионная.

Основа этого метода – существенные различия в их электрической природе. Прежде, чем приступить к процессу обогащения, необходимо зарядить восприимчивый материал. Благодаря этому, его можно будет отделить от пустой породы. Изменения электрического поля можно достигнуть несколькими путями – индукция, касание, воздействие газовыми ионами.

Обогащение полезных ископаемых в горнодобывающей промышленности

Принцип разделения основывается на том, что поведение проводника и диэлектрика разное. При контакте одноименных зарядов, они отталкиваются, а непроводник остается неподвижным. Если заряды разные, то они притягиваются. Из-за этого, порода с большим количеством полезного сырья отделяется от пустой. Электрическая сепарация – один из самых эффективных процессов обогащения полезных ископаемых, без применения химических реагентов.

Флотационное обогащение

Чаще всего этот способ применяется в обогащении медной руды. В основе принципа действия этого метода лежит разделение жидкости на фракции, при котором гидрофобные частицы удерживаются на поверхности легкого слоя, и поднимаются на поверхность с пеной или реагентом.

Существует 2 типа флотационных методов обогащения:

  1. Жидкость-жидкость (масляная, пленочная).
  2. Жидкость-газ (пенная).

В промышленных масштабах чаще используется пенная флотация. Жидкость состоит из реагентов, которые увеличивают адгезивные свойства полезного ископаемого. При вспенивании суспензии, частицы металла, например, меди, прикрепляются к пузырькам воздуха, и всплывают на поверхность. Пустая порода оседает на дно, а пена собирается и отправляется в дальнейшее производство.

Обогащение полезных ископаемых в горнодобывающей промышленности

Пленочная и масляная сепарация появилась намного раньше. В качестве реагента, к которому прикреплялось полезное ископаемое, использовались перья смазанные жиром или смола. При всплывании на поверхность, они задерживали в себе частички гидрофобных материалов. Но, в сравнении с ним, пенная сепарация несколько эффективнее и дешевле.

Радиометрическая сепарация

Этот метод является одним из самых дорогих, используется для руд с низким содержанием полезного сырья. Например, он высокоэффективен в поиске драгоценных камней, концентрация которых в породе может достигать 0,1%. Основа обогащения полезных ископаемых этим методом – способность минералов к излучению или восприимчивость к облучению Он чувствителен для частичек 2-300 мм. Принцип действия построен на восприимчивости ископаемого к излучению. Во время облечения, камни начинают источать свечение. Специальный прибор регистрирует его и подает поток воздуха, в результате чего, частица выбрасывается в приемник.

Обогащение полезных ископаемых в горнодобывающей промышленности

Химическая сепарация

При обработке урановых, вольфрамовых, медных, медно-никелевых руд активно используется и метод химического обогащения. Также для обезжелезивания каолинов, кварца и полевого шпата. Ископаемое помещают в специальный реагент, который растворяет пустую породу, не меняя состав полезного сырья. Благодаря этому методу можно получить высокую эффективность обогащения, но его себестоимость достаточно высока. Поэтому его используют в случаях, когда концентрация материала в руде достаточно низкая, из-за чего другие методы сепарации будут не результативны.

Обогащение полезных ископаемых в горнодобывающей промышленности

Одним из самых новых является химико-биологическое обогащение. В основе лежит принцип выщелачивания, разрушения кристаллических решеток пустой породы бактериями, например, Thiobacillus ferroxidans, Ferrobacillus tiooxidans. Также продукты жизнедеятельности этих бактерий являются сильными окислителями, благодаря чему разрешение пустой породы происходит намного быстрее. В результате этого процесса можно перерабатывать руды с низким содержанием полезного ископаемого.

Обогатительные фабрики

Обогащение полезных ископаемых – это способ увеличения концентрации ценного сырья, и отделения его от пустой породы. Оно необходимо для получения чистых металлов, угля, драгоценных камней. Каждое горнодобывающее предприятие не может обойтись без обогатительной фабрики, где и происходит процесс сепарации. Они могут, как располагать на месте добычи полезных ископаемых, так и при заводах, которые перерабатывают уже готовое сырье.

Современные обогатительные фабрики являются полностью автоматизированными, а речное вмешательство сведено до минимума. На них в сутки может быть переработано до 100 тысяч тонн руды. Очень часто методы обогащения полезных ископаемых комбинируются, как, например, химический и флотацинный.

Источник

Обогаще́ние поле́зных ископа́емых — совокупность процессов первичной обработки минерального сырья, имеющая своей целью отделение всех ценных минералов от пустой породы, а также взаимное разделение ценных минералов.

Общая информация[править | править код]

При обогащении возможно получение как конечных товарных продуктов (асбест, графит и др.), так и концентратов, пригодных для дальнейшей химической или металлургической переработки. Обогащение — наиважнейшее промежуточное звено между добычей полезных ископаемых и использованием извлекаемых веществ. В основе теории обогащения лежит анализ свойств минералов и их взаимодействия в процессах разделения — минералургия.

Обогащение позволяет существенно увеличить концентрацию ценных компонентов. Содержание важных цветных металлов — меди, свинца, цинка — в рудах составляет 0,3—2 %, а в их концентратах — 20—70 %. Концентрация молибдена увеличивается от 0,1—0,05 % до 47—50 %, вольфрама — от 0,1—0,2 % до 45—65 %, зольность угля снижается от 25—35 % до 2—15 %. В задачу обогащения входит также удаление вредных примесей минералов (мышьяк, сера, кремний и т. д.). Извлечение ценных компонентов в концентрат в процессах обогащения составляет от 60 до 95 %.

Читайте также:  Клюква полезные свойства и противопоказания видео

Операции обработки, которым подвергают на обогатительной фабрике горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное, магнитное, электрическое, флотационное, бактериальное и др. способы обогащения.

Технологический эффект обогащения[править | править код]

Предварительное обогащение полезных ископаемых позволяет:

  • увеличить промышленные запасы минерального сырья за счёт использования месторождений бедных полезных ископаемых с низким содержанием полезных компонентов;
  • повысить продуктивность труда на горных предприятиях и снизить стоимость добываемой руды за счёт механизации горных работ и сплошной выемки полезного ископаемого вместо выборочной;
  • повысить технико-экономические показатели металлургических и химических предприятий при переработке обогащённого сырья за счёт снижения затрат топлива, электроэнергии, флюсов, химических реактивов, улучшения качества готовых продуктов и снижения потерь полезных компонентов с отходами;
  • осуществить комплексное использование полезных ископаемых, потому что предварительное обогащение позволяет извлечь из них не только основные полезные компоненты, но и сопутствующие, которые содержатся в малых количествах;
  • снизить затраты на транспортировку к потребителям продукции горного производства за счёт транспортирования более богатых продуктов, а не всего объёма добытой горной массы, содержащей полезное ископаемое;
  • выделить из минерального сырья вредные примеси, которые при дальнейшей их переработке могут ухудшать качество конечной продукции, загрязнять окружающую среду и угрожать здоровью людей.

Переработка полезных ископаемых осуществляется на обогатительных фабриках, представляющих собой сегодня мощные высокомеханизированные предприятия со сложными технологическими процессами.

Классификация процессов обогащения[править | править код]

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Подготовительные процессы[править | править код]

Подготовительные процессы предназначены для раскрытия или открытия зёрен полезных компонентов (минералов), входящих в состав полезного ископаемого, и деления его на классы крупности, удовлетворяющие технологическим требованиям последующих процессов обогащения. К подготовительным относят процессы дробления, измельчения, грохочения и классификации.

Дробление и измельчение[править | править код]

Дробление и измельчение — процесс разрушения и уменьшения размеров кусков минерального сырья (полезного ископаемого) под действием внешних механических, тепловых, электрических сил, направленных на преодоления внутренних сил сцепления, связывающих между собой частички твёрдого тела.

По физике процесса между дроблением и измельчением нет принципиальной разницы. Условно принято считать, что при дроблении получают частицы крупнее 5 мм, а при измельчении — мельче 5 мм. Размер наиболее крупных зёрен, до которого необходимо раздробить или измельчить полезное ископаемое при его подготовке к обогащению, зависит от размера включений основных компонентов, входящих в состав полезного ископаемого, и от технических возможностей оборудования, на котором предполагается проводить следующую операцию переработки раздробленного (измельчённого) продукта.

Раскрытие зёрен полезных компонентов — дробления или (и) измельчения сростков до полного освобождения зёрен полезного компонента и получения механической смеси зёрен полезного компонента и пустой породы (микста). Открытие зёрен полезных компонентов — дробление или (и) измельчения сростков до высвобождения части поверхности полезного компонента, что обеспечивает доступ к нему реагента.

Дробление проводят на специальных дробильных установках. Дроблением называется процесс разрушения твердых тел с уменьшением размеров кусков до заданной крупности, путём действия внешних сил, преодолевающих внутренное силы сцепления, связывающие между собой частицы твердого вещества. Измельчение дроблёного материала осуществляют в специальных мельницах (как правило, шаровых или стержневых).

Грохочение и классификация[править | править код]

Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты разной крупности — классы крупности. Грохочение осуществляется рассеванием полезного ископаемого на решето и ситах с калиброванными отверстиями на мелкий (подрешётный) продукт и крупный (надрешётный). Грохочение применяется для разделения полезных ископаемых по крупности на просевных (просеивающих) поверхностях, с размерами отверстий от миллиметра до нескольких сотен миллиметров.

Грохочение осуществляется специальными машинами — грохотами.

Классификация материала по крупности производится в водной или воздушной среде и базируется на использовании различий в скоростях оседания частичек разной крупности. Большие частички оседают быстрее и концентрируются в нижней части классификатора, мелкие частички оседают медленнее и выносятся из аппарата водным или воздушным потоком. Полученные при классификации крупные продукты называются песками, а мелкие — сливом (при гидравлической классификации) или тонким продуктом (при пневмоклассификации). Классификация используется для разделения мелких и тонких продуктов по зерну размером не более 1 мм.

Основные (обогатительные) процессы[править | править код]

Основные процессы обогащения предназначены для выделения из исходного минерального сырья одного или нескольких полезных компонентов. Исходный материал в процессе обогащения разделяется на соответствующие продукты — концентрат(ы), пром.продукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Различия в плотности минеральных зёрен используются при обогащении полезных ископаемых гравитационным методом. Его широко применяют при обогащении угля, руд и нерудного сырья.

Магнитное обогащение полезных ископаемых основывается на неодинаковом воздействии магнитного поля на минеральные частички с разной магнитной восприимчивостью и на действии коэрицитивной силы. Магнитным способом, используя магнитные сепараторы, обогащают железные, марганцевые, титановые, вольфрамовые и другие руды. Кроме того, этим способом выделяют железистые примеси из графитовых, тальковых и других полезных ископаемых, применяют для регенерации магнетитовых суспензий.

Различия в смачиваемости компонентов водой используется при обогащении полезных ископаемых флотационным способом. Особенностью флотационного способа является возможность штучного регулирования смоченности и разделения очень тонких минеральных зёрен. Благодаря этим особенностям флотационный способ является одним из наиболее универсальных, он используется для обогащения разнообразных тонковкрапленных полезных ископаемых.

Различия в смачиваемости компонентов используется также в ряде специальных процессов обогащения гидрофобных полезных ископаемых — в масляной агломерации, масляной грануляции, полимерной (латексной) и масляной флокуляции.

Читайте также:  Как заставить ребенка кушать полезную еду

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды, могут обогащаться способом электрической сепарации. К таким полезным ископаемым относятся апатитовые, вольфрамовые, оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяют отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации. Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Отличия в адгезионных и сорбционных свойствах минералов полезного компонента и пустой породы лежит в основе адгезионного и сорбционного способов обогащения золота и адгезионного обогащения алмазов (способы принадлежат к специальным способам обогащения).

Разные свойства компонентов полезного ископаемого взаимодействовать с химическими реагентами, бактериями и (или) их метаболитами обуславливает принцип действия химического и бактериального выщелачивания ряда полезных ископаемых (золото, медь, никель).

Разная растворимость минералов лежит в основе современных комплексных (совмещённых) процессов типа «добыча-обогащение» (скважинное растворение солей с дальнейшим выпариванием раствора).

Использование того или иного метода обогащения зависит от минерального состава полезных ископаемых, физических и химических свойств разделяемых компонентов.

Заключительные операции[править | править код]

Заключительные операции в схемах переработки полезных ископаемых предназначены, как правило, для снижения влажности до кондиционного уровня, а также для регенерации оборотных вод обогатительной фабрики.

Основные заключительные операции — сгущение пульпы, обезвоживание и сушка продуктов обогащения. Выбор метода обезвоживания зависит от характеристик материала, который обезвоживается, (начальной влажности, гранулометрического и минералогического составов) и требований к конечной влажности. Часто необходимой конечной влажности трудно достичь за одну стадию, поэтому на практике для некоторых продуктов обогащения используют операции обезвоживания разными способами в несколько стадий.

Для обезвоживания продуктов обогащения используют способы дренирования (грохоты, элеваторы), центрифугирования (фильтрующие, осадительные и комбинированные центрифуги), сгущения (сгустители, гидроциклоны), фильтрования (вакуум-фильтры, фильтр-прессы) и термической сушки.

Кроме технологических процессов, для нормального функционирования обогатительной фабрики должны быть предусмотрены процессы производственного обслуживания: внутрицеховой транспорт полезного ископаемого и продуктов его переработки, снабжения фабрики водой, электроэнергией, теплом, технологический контроль качества сырья и продуктов переработки.

Основные методы обогащения полезных ископаемых[править | править код]

По виду среды, в которой производят обогащение, различают обогащение:

  • сухое обогащение (в воздухе и аэросуспензии),
  • мокрое (в воде, тяжёлых средах),
  • в гравитационном поле,
  • в поле центробежных сил,
  • в магнитном поле,
  • в электрическом поле.

Гравитационные методы обогащения основываются на различии в плотности, крупности и скорости движения кусков породы в водной или воздушной среде. При разделении в тяжёлых средах преимущественное значение имеет разница в плотности разделяемых компонентов.

Для обогащения наиболее мелких частиц применяют способ флотации, основанный на разнице в поверхностных свойствах компонентов (избирательной смачиваемости водой, прилипании частиц минерального сырья к пузырькам воздуха).

Продукты обогащения полезных ископаемых[править | править код]

В результате обогащения полезное ископаемое разделяется на несколько продуктов: концентрат (один или несколько) и отходы. Кроме того, в процессе обогащения могут быть получены промежуточные продукты.

Концентраты[править | править код]

Концентраты — продукты обогащения, в которых сосредоточено основное количество ценного компонента. Концентраты в сравнении с обогащаемым материалом характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей. В дальнейшем концентраты направляются на дальнейшую переработку. Концентраты обогащения руд чёрных и цветных металлов могут подвергаться окускованию или сразу направляться напрямую на пирометаллургический передел[1].

Отходы[править | править код]

Отходы — конечные продукты обогащения с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически и/или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты, но не термину хвосты, которым, в отличие от отходов, называют обеднённый продукт любой отдельно взятой обогатительной операции).

Промежуточные продукты[править | править код]

Промежуточные продукты (промпродукты) — это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения[править | править код]

Качество полезных ископаемых и продуктов обогащения определяется содержанием и извлечением ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное[править | править код]

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых[править | править код]

Частичное обогащение — это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения зольности неклассифицированного энергетического угля путём выделения и обогащения крупного класса с дальнейшим смешиванием полученного концентрата и мелкого необогащённого отсева.

Потери полезных ископаемых при обогащении[править | править код]

Под потерями полезного ископаемого при обогащении понимается количество пригодного для обогащения полезного компонента, которое теряется с отходами обогащения вследствие несовершенства процесса или нарушения технологического режима.

Установлены допустимые нормы взаимозасорения продуктов обогащения для разных технологических процессов, в частности, для обогащения угля. Допустимый процент потерь полезного ископаемого сбрасываетс?