Отношение полезной работы к полной это

На этом уроке узнаем, куда пропадает часть затраченной энергии при работе каких-либо механизмов, научимся решать задачи с использованием КПД и познакомимся с мерами по увеличению КПД разных механизмов.

Полезная и затраченная работа

На предыдущих занятиях при рассмотрении устройства и работы простейших механизмов мы не учитывали трение между деталями механизмов, вес механизмов – это идеализированные условия. На практике работа, совершаемая приложенной к телу силой, называется затраченной, она всегда больше работы, которая совершается по перемещению груза, поднятию груза или преодолению сопротивления, эта работа называется полезной (Рис. 1). Полезная работа меньше затраченной .

Рис. 1. Поднимая груз, мы поднимаем крепление, веревки, преодолеваем трение

Коэффициент полезного действия

Отношение полезной работы к затраченной работе, выраженной в процентах, называется коэффициентом полезного действия (КПД): .

КПД выражается в процентах, чтобы его рассчитать, необходимо знать работу полезную и работу затраченную. При этом золотое правило механики не нарушается, потому что часть работы необходимо затратить, например, на трение, и, если сложить эти расходы, получается затраченная работа.

Эксперимент

На наклонной плоскости перемещаем каретку с грузом, с помощью динамометра узнаем вес каретки с грузом, в нашем случае вес 3 Н (Рис. 2).

Рис. 2. Вес каретки с грузом

Далее будем стараться перемещать каретку по наклонной плоскости, заметим при этом показания динамометра, который покажет силу тяги, прикладываемую к каретке. При равномерном перемещении сила тяги равна 1,8 Н. Узнаем путь каретки, он составляет 0,38 м, высота на которую каретку подняли 0,18 м (Рис. 3).

Рис. 3. Поднятие каретки с грузом по наклонной плоскости

Рассчитываем полезную и затраченную работу. Мы подняли груз весом P на высоту h – это полезная работа: .

Сила тяги и путь пройденный кареткой – это затраченная работа: .

Определим КПД: .

Задача

Условие: с помощью неподвижного блока груз массой m = 100 кг, подняли на высоту h = 5 м. Необходимо посчитать затраченную работу , если КПД этой установки = 70% (Рис. 4).

Рис. 4. Работа силы тяжести при поднятии груза

Решение

В формулу расчета КПД запишем известные нам данные и преобразуем, разделив левую и правую часть на 100%.

Из этого выражения получим .

Чтобы рассчитать полезную работу, необходимо выяснить, что полезного совершалось в данной задаче. Груз массой 100 кг поднимали на высоту 5 м.

– ускорение свободного падения

 

Объединяем все полученные формулы вместе: .

Проверка единиц измерения: .

Ответ: приблизительное значение работы составляет 7143 Дж.

Заключение

Когда конструкторы создают различные механизмы, они стремятся увеличить КПД путём уменьшения трения между частями механизма (смазочные материалы, подбор материалов) или уменьшения веса механизма.

Список рекомендованной литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.

Рекомендованные ссылки ресурсы сети Интернет

Читайте также:  Как нужно отдыхать чтобы это было полезно

Интернет-портал «» (Источник)

Домашнее задание

  1. На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложили силу 250 Н, груз подняли на высоту 0,08 м, при этом точка приложения движущей силы опустилась на высоту 0,4 м. Найти КПД рычага.
  2. Ящик массой 54 кг с помощью подвижного блока подняли на некоторую высоту. К тросу блока была приложена сила, равная 360 Н. Определите коэффициент полезного действия подвижного блока.
  3. По наклонному настилу длиной 3 м рабочий вкатил в кузов бочку массой 55 кг. Определите КПД погрузки, если рабочий прилагал силу 330 Н, а высота кузова машины 1,5 м.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 июля 2019;
проверки требуют 7 правок.

Запрос «КПД» перенаправляется сюда; см. также другие значения.

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»)[1]. КПД является безразмерной величиной и часто измеряется в процентах.

Определение[править | править код]

Математически КПД определяется как

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, эту формулу иногда записывают в виде

.

Здесь умножение на не несёт содержательного смысла, поскольку . В связи с этим второй вариант записи формулы менее предпочтителен (одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует).

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

,

где  — количество теплоты, полученное от нагревателя,  — количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

.

Другие похожие показатели[править | править код]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов[править | править код]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Читайте также:  Чем полезна белокочанная капуста для человека

Тепловые насосы и холодильные машины[править | править код]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент[en]

,

где  — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность);  — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

,

где  — тепло конденсации, передаваемое теплоносителю;  — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине , отсюда для идеальной машины

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

,

где ,  — температуры горячего и холодного концов, K[2]. Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Литература[править | править код]

  • Пёрышкин А. В. Физика. 8 класс. — Дрофа, 2005. — 191 с. — 50 000 экз. — ISBN 5-7107-9459-7..

Примечания[править | править код]

Источник

      Тема 05. Работа и энергия      
  «««  [ ]  »»» 
  § 05-б. Коэффициент полезного действия     
 

Допустим, мы отдыхаем на даче, и нам нужно принести из колодца воды. Мы опускаем в него ведро, зачерпываем воду и начинаем поднимать. Не забыли, какова наша цель? Правильно: набрать воды. Но взгляните: мы поднимаем не только воду, но и само ведро, а также тяжёлую цепь, на которой оно висит. Это символизирует двухцветная стрелка: вес поднимаемого нами груза складывается из веса воды и веса ведра и цепи.

     

Рассматривая ситуацию качественно, мы скажем: наряду с полезной работой по подъёму воды мы совершаем и другую работу – подъём ведра и цепи. Разумеется, без цепи и ведра мы не смогли бы набрать воды, однако, с точки зрения конечной цели, их вес «вредит» нам. Если бы этот вес был бы меньше, то и полная совершённая работа тоже была бы меньше (при той же полезной).

Теперь перейдём к количественному изучению этих работ и введём физическую величину, называемую коэффициентом полезного действия.

Задача. Яблоки, отобранные для переработки, грузчик высыпает из корзин в грузовик. Масса пустой корзины 2 кг, а яблок в ней – 18 кг. Чему равна доля полезной работы грузчика от его полной работы?

Решение. Полной работой является перемещение яблок в корзинах. Эта работа складывается из подъёма яблок и подъёма корзин. Важно: поднятие яблок – полезная работа, а поднятие корзин – «бесполезная», потому что цель работы грузчика – переместить только яблоки.

  1. По ходу достижения главной цели (достать воду) мы …
  2. Что показывает стрелка из двух половинок на рисунке?
  3. Если бы вес ведра и цепи был меньше, то …
  4. И при этом полезная работа была бы …
  5. На примере задачи с погрузкой яблок мы …
  6. В итоге нас интересует не полезная или полная работа, а …
  7. Полная работа грузчика в задаче – это …
  8. Полная работа грузчика в задаче состоит …
  9. Полезной работой грузчика является …
  10. Поднятие самих корзин – не полезная работа, поскольку …
 
  
Читайте также:  Чем полезна каша рисовая с тыквой на молоке

 
  
 

Введём обозначения: Fя – сила, с которой руки поднимают вверх только яблоки, а Fк – сила, с которой руки поднимают вверх только корзину. Каждая из этих сил равна соответствующей силе тяжести: F=mg.

Пользуясь формулой  A = ±( F||· l ) , «распишем» работы этих двух сил:

Aполезн  =  +Fя · lя  =  mяg · h       и       Aбесполезн  =  +Fк · lк  =  mкg · h

Полная работа складывается из двух работ, то есть равна их сумме:

Aполн  =  Aполезн  +  Aбесполезн  =  mяg h  +  mкg h  =  ( mя + mк ) · g h

В задаче нас просят вычислить долю полезной работы грузчика от его полной работы. Сделаем это, поделив полезную работу на полную:

      Доля  =    Aполезн    =   mя · g h   =   18 кг   =   18 кг   =  0,9      
Aполн ( mя + mк ) · g h ( 18 + 2 ) кг 20 кг

В физике такие доли принято выражать в процентах и обозначать греческой буквой «η» (читается: «эта»). В итоге получим:

η = 0,9     или     η = 0,9 ·100% = 90% ,   что то же самое.

Это число показывает, что из 100% полной работы грузчика доля его полезной работы составляет 90%. Задача решена.

Физическая величина, равная отношению полезной работы к полной совершённой работе, в физике имеет собственное название – КПД – коэффициент полезного действия:

              η  =    Aполезн                

η – коэффициент полезного действия
Aполезн – полезная работа, Дж
Aполн – полная работа, Дж

Aполн

После вычисления КПД по этой формуле его принято умножать на 100%. И наоборот: для подстановки КПД в эту формулу его значение нужно перевести из процентов в десятичную дробь, поделив на 100%.

  1. Сила Fя при равномерном подъёме всегда равна силе, …
  2. Мы записали равенство Aполн = Aполезн + Aбесполезн так как …
  3. Требуемую в условии задачи долю мы найдём, …
  4. Доли, подобные вычисленной нами, обычно выражают …
  5. В сравнении с числом 0,9 запись 90% означает: …
  6. КПД, равный 0,9 или 90% означает: …
  7. Коэффициент полезного действия вычисляется как …
  8. Как «расшифровать» аббревиатуру КПД?
  9. Вычисляя КПД, полученное значение дроби …
  10. Чтобы значение КПД можно было использовать для вычислений, …
 
  

Источник