Полезные формулы для егэ по математике

Полезные формулы для егэ по математике thumbnail

Формулы для профильного ЕГЭ-2020 по математике

Формулы сокращённого умножения
Арифметическая и геометрическая прогрессии
Вероятность
Свойства степеней
Свойства логарифмов
Тригонометрия
Производные
Первообразные
Геометрия

Формулы сокращённого умножения

`(a + b)^2=a^2 + 2ab + b^2` 
`(a − b)^2=a^2 − 2ab + b^2` 
`a^2 − b^2=(a + b)(a − b)` 
  
`a^3 + b^3=(a + b)(a^2 − ab + b^2)` 
`a^3 − b^3=(a − b)(a^2 + ab + b^2)` 
  
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3`
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3`

Прогрессии

Арифметическая прогрессия:

`a_n=a_(n-1)+d`
`a_n=a_1+(n-1)*d`
`S_n=((a_1+a_n)*n)/2`

Геометрическая прогрессия:

`b_n=b_(n-1)*q`
`b_n=b_1*q^(n-1)`
`S_n=((q^n-1)*b_1)/(q-1)`
Бесконечно убывающая: `S=b_1/(1-q)`

Вероятность

Вероятность события A:`P(A)=m/n`
   
События происходят A и B происходят одновременно`A*B` 
Независимые события:`P(A*B)=P(A)*P(B)`
Зависимые события:`P(A*B)=P(A)*P(B|A)`
   
Происходит или событие A, или B`A+B` 
Несовместные события:`P(A+B)=P(A)+P(B)`
Совместные события:`P(A+B)=P(A)+P(B)-P(A*B)`

Свойства степеней

`a^0=1``a^1=a`
`a^(-1)=1/a``a^(-n)=1/a^n`
`a^(1/2)=sqrt(a)``a^(1/n)=root(n)(a)`
`a^m*a^n=a^(m+n)``a^m/a^n=a^(m-n)`
`(a*b)^n=a^n*b^n``(a/b)^n=a^n/b^n`
`(a^m)^n=a^(m*n)``a^(m/n)=root(n)(a^m)`

Свойства логарифмов

`log_ab=c«a^c=b`
`log_a1=0` 
`log_aa=1` 
`log_a(b*c)=log_ab+log_ac` 
`log_a(b/c)=log_ab-log_ac` 
`log_ab^n=n*log_ab` 
`log_(a^m)b=1/m*log_ab` 
`log_ab=1/(log_ba)` 
`log_ab=(log_cb)/(log_ca)` 
`a^(log_cb)=b^(log_ca)` 
`a^(log_ab)=b` 

Тригонометрия

`alpha``0``pi/6``pi/4``pi/3``pi/2``pi``(3pi)/2``2pi`
`0^circ``30^circ``45^circ``60^circ``90^circ``180^circ``270^circ``360^circ`
`sinalpha``0``1/2``sqrt(2)/2``sqrt(3)/2``1``0``-1``0`
`cosalpha``1``sqrt(3)/2``sqrt(2)/2``1/2``0``-1``0``1`
`text(tg)alpha``0``sqrt(3)/3``1``sqrt(3)``infty``0``infty``0`
`text(ctg)alpha``infty``sqrt(3)``1``sqrt(3)/3``0``infty``0``infty`

Основные соотношения

`sin^2alpha+cos^2alpha=1`
`text(tg)alpha=sinalpha/cosalpha=1/(text(ctg)^2alpha)` 

Формулы двойного угла

`cos2alpha={(cos^2alpha-sin^2alpha),(1-2sin^2alpha),(2cos^2alpha-1):}`
`sin2alpha=2sinalphacosalpha` 
`text(tg)2alpha=(2text(tg)alpha)/(1-text(tg)^2alpha)` 

Формулы суммы и разности аргументов

`sin(alpha+-beta)=sinalphacosbeta+-cosalphasinbeta`
`cos(alpha+-beta)=cosalphacosbeta∓sinalphasinbeta`
`text(tg)(alpha+-beta)=(text(tg)alpha+-text(tg)beta)/(1∓text(tg)alpha*text(tg)beta)`

Преобразование суммы и разности в произведение

`sinalpha+-sinbeta=2sin((alpha+-beta)/2)cos((alpha∓beta)/2)`
`cosalpha+cosbeta=2cos((alpha+beta)/2)cos((alpha-beta)/2)`
`cosalpha-cosbeta=-2sin((alpha+beta)/2)sin((alpha-beta)/2)`

Формулы половинного аргумента

`sin(alpha/2)=+-sqrt((1-cosalpha)/2)`
`cos(alpha/2)=+-sqrt((1+cosalpha)/2)`
`text(tg)(alpha/2)=+-sqrt((1-cosalpha)/(1+cosalpha))=(1-cosalpha)/sinalpha=sinalpha/(1+cosalpha)` 

Обратные тригонометрические функции

`sinx=A``x=(-1)^k*arcsinA + pik`
или
`{(x=arcsinA + 2pik),(x=pi-arcsinA+2pik):}`
`kinZZ`
`cosx=A``x=±arccosA + 2pik``kinZZ`
`tg x=A``x=text(arctg) A + pik``kinZZ`
`ctg x=A``x=text(arcctg) A + pik``kinZZ`

Также некоторые тригонометрические соотношения смотрите в разделе Геометрия.

Производные

Основные правила дифференцирования

`(u+-v)’=u’+-v’` 
`(u*v)’=u’*v+u*v’` 
`(u/v)^’=(u’*v-u*v’)/v^2` 
`[f(g(x))]’=f'(g(x))*g'(x)`

Уравнение касательной

`y=f(x_0)+f'(x_0)*(x-x_0)`
 

Производные элементарных функций

`C’=0``(C*x)’=C` 
`(x^m)’=mx^(m-1)``(sqrtx)’=1/(2sqrtx)` 
`(1/x)^’=-1/x^2` 
`(e^x)’=e^x``(lnx)’=1/x` 
`(a^x)’=a^x*lna``(log_ax)’=1/(xlna)`
`(sinx)’=cosx``(cosx)’=-sinx` 
`(text(tg)x)’=1/cos^2x``(text(ctg)x)’=-1/sin^2x` 
`(arcsinx)’=1/sqrt(1-x^2)``(arccosx)’=-1/sqrt(1-x^2)`
`(text(arctg))=1/(1+x^2)’``(text(arcctg))’=-1/(1+x^2)` 

Также некоторые сведения про производные смотрите в описании задач
№14 (база), №7 (профиль), №12 (профиль).

Первообразные

Первообразная:`F'(x)=f(x)`   
Неопределённый интеграл:`intf(x)dx=F(x)+C`  
Определённый интеграл (формула Ньютона-Лейбница):`int_a^bf(x)dx=F(b)-F(a)`Полезные формулы для егэ по математике

Таблица первообразных

 

`f(x)``F(x)``f(x)``F(x)`
`a``ax`   
`x^n``x^(n+1)/(n+1)` `1/x``lnx`
`e^x``e^x` `a^x``a^x/lna`
`sinx``-cosx` `cosx``sinx`
`1/cos^2x``text(tg)x` `1/sin^2x``-text(ctg)x`
`1/(x^2+a^2)``1/atext(arctg)x/a` `1/(x^2-a^2)``1/(2a)ln|(x-a)/(x+a)|`
`1/sqrt(a^2-x^2)``text(arcsin)x/a` `1/sqrt(x^2+a)``ln|x+sqrt(x^2+a)|`

Геометрия

Планиметрия (2D)

Площади фигур:

Окружность:`S=pir^2` 
Треугольник:`S=1/2ah` 
Параллелограмм:`S=ah` 
Четырёхугольник:`S=1/2d_1d_2sinvarphi`
Трапеция:`S=(a+b)/2*h` 

Стереометрия (3D)

Призма:`V=S_(осн)h` 
Пирамида:`V=1/3S_(осн)h` 
Конус:`V=1/3S_(осн)h` 
`S_(бок)=pirl` 
Цилиндр:`V=pir^2h`
 `S_(бок)=2pirh`
Шар:`V=4/3pir^3` 
`S=4pir^2` 

Источник

Формулы, правила, свойства. Можно использовать для сдачи ЕГЭ и ОГЭ по математике.

Для начала шпаргалка в компактном виде:

шпаргалки по математике

Формулы сокращенного умножения

(а+b)2 = a2 + 2ab + b2

(а-b)2 = a2 – 2ab + b2

a2 – b2 = (a-b)(a+b)

a3 – b3 = (a-b)( a2 + ab + b2)

a3 + b3 = (a+b)( a2 – ab + b2)

(a + b)3 = a3 + 3a2b+ 3ab2+ b3

(a – b)3 = a3 – 3a2b+ 3ab2- b3

Свойства степеней

a0 = 1 (a≠0)

am/n = (a≥0, n ε N, m ε N)

a- r = 1/ a r (a>0, r ε Q)

a m · a n = a m + n

a m : a n = a m – n (a≠0)

(a m) n = a mn

(ab) n = a n b n

(a/b) n = a n/ b n

Первообразная

Если F’(x) = f(x), то F(x) – первообразная

для f(x)

Функция f(x) = Первообразная F(x)

k = kx + C

xn = xn+1/n+1  + C

1/x = ln |x| + C

ex = ex + C

ax = ax/ ln a + C

1/√x = 2√x + C

cos x = sin x + C

1/ sin2 x = – ctg x + C

1/ cos2 x = tg x + C

sin x = – cos x + C

1/ x2 = – 1/x

Геометрическая прогрессия

bn+1 = bn · q, где n ε N

q – знаменатель прогрессии

bn = b1 · qn – 1 – n-ый член прогрессии

Сумма n-ыхчленов

Sn = (b n q – b 1 )/q-1

Sn = b 1 (q n – 1 )/q-1

Модуль

|a| = a, если a≥0

-a, если a<0

Формулы cos и sin

sin (-x) = -sin x

cos (-x) = cos x

sin (x + π) = -sin x

cos (x + π) = -cos x

sin (x + 2πk) = sin x

cos (x + 2πk) = cos x

sin (x + π/2) = cos x

Объемы и поверхности тел

1. Призма, прямая или наклонная, параллелепипед V = S·h

2. Прямая призмаSБОК = p·h, p – периметр или длина окружности

3. Параллелепипед прямоугольный

V = a·b·c; P = 2(a·b + b·c + c·a)

P – полная поверхность

4. Куб: V = a3 ; P = 6 a2

5. Пирамида, правильная и неправ.

S = 1/3 S·h; S – площадь основания

6. Пирамида правильная S =1/2 p·A

A – апофема правильной пирамиды

7. Цилиндр круговой V = S·h = πr2h

8. Цилиндр круговой: SБОК = 2 πrh

9. Конус круговой: V=1/3 Sh = 1/3 πr2h

10. Конус круговой: SБОК = 1/2 pL= πrL

Тригонометрические уравнения

sin x = 0, x = πn

sin x = 1, x = π/2 + 2 πn

sin x = -1, x = – π/2 + 2 πn

cos x = 0, x = π/2 + 2 πn

cos x = 1, x = 2πn

cos x = -1, x =  π + 2 πn

Теоремы сложения

cos (x +y) = cosx ·cosy – sinx ·siny

cos (x -y) = cosx ·cosy + sinx ·siny

sin (x +y) = sinx ·cosy + cosx ·siny

sin (x -y) = sinx ·cosy – cosx ·siny

tg (x ±y) = tg x ± tg y/ 1 -+ tg x ·tg y

ctg (x ±y) = tg x -+ tg y/ 1± tg x ·tg y

sin x ± sin y = 2 cos (x±y/2)· cos (x-+y/2)

cos x ± cosy = -2 sin (x±y/2)· sin (x-+y/2)

1 + cos 2x = 2 cos2 x; cos2x = 1+cos2x/2

1 – cos 2x = 2 sin2 x; sin2x = 1- cos2x/2

6. Трапеция

a,b – основания; h – высота, c – средняя линия S = (a+b/2)·h = c·h

7. Квадрат

а – сторона, d – диагональ S = a2 = d2/2

8. Ромб

a – сторона, d1, d2 – диагонали, α – угол между ними S = d1d2/2 = a2sinα

9. Правильный шестиугольник

a – сторона S = (3√3/2)a2

10. Круг

S = (L/2) r = πr2 = πd2/4

11. Сектор

S = (πr2/360) α

Правила дифференцирования

( f (x) + g (x) )’ = f ’(x) + g’(x)

(k(f(x))’ = kf ’ (x)

(f(x) g(x))’ = f ’(x)·g(x) + f(x)·g’(x)

(f(x)/g(x))’=(f ’(x)·g(x) – f(x)·g’(x))/g2 (x)

(xn)’ = nx n-1

(tg x)’ = 1/ cos2 x

(ctg x)’ = – 1/ sin2 x

(f (kx + m))’ = kf ’(kx + m)

Уравнение касательной к графику функции

y = f ’(a) (x-a) + f(a)

Площадь S фигуры, ограниченной прямыми x=a, x=b

S =  ∫( f(x) – g(x)) dx

Формула Ньютона-Лебница

∫ab f(x) dx = F(b) – F (a)

tπ/4π/23π/4π
cos√2/2-√2/21
sin√2/21√2/2
t5π/43π/2 7π/4
cos-√2/2√2/21
sin-√2/2-1-√2/2
tπ/6 π/4π/3
tg√3/31√3
ctg√31√3/3
Читайте также:  Что полезнее носить золото или серебро

sin x = b x = (-1)n arcsin b + πn

https://5-ege.ru/shpargalki-po-matematike/

cos x = b  x = ± arcos b + 2 πn

tg x = b  x = arctg b + πn

ctg x = b  x = arcctg b + πn

Теоремасинусов: a/sin α = b/sin β = c/sin γ = 2R

Теорема косинусов: с2=a2+b2-2ab cos y

Неопределенные интегралы

∫ dx = x + C

∫ xn dx = (xn+1/n+1) + C

∫ dx/x2 = -1/x + C

∫ dx/√x = 2√x + C

∫ (kx+b) = 1/k F(kx + b)

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ dx/sin2 x = -ctg + C

∫ dx/cos2 x = tg + C

∫ x r dx = x r+1/r+1 + C

Логарифмы

1. loga a = 1

2. loga 1 = 0

3. loga (bn) = n loga b

4. log An b = 1/n loga b

5. loga b = log c b/ log c a

6. loga b = 1/ log b a

Градус304560
sin1/2√2/2√3/2
cos1√3/2√2/21/2
tg√3/31√3
tπ/6π/32π/35π/6
cos√3/21/2-1/2-√3/2
sin1/2√3/2√3/21/2
90120135150180
1√3/2√2/21/2
-1/2-√2/2-√3/2-1
-√3-1√3/3
t7π/64π/3 5π/311π/6
cos-√3/2-1/21/2√3/2
sin-1/2-√3/2-√3/2-1/2

Формулы двойного аргумента

cos 2x = cos2x – sin2 x = 2 cos2 x -1 = 1 – 2 sin2 x = 1 – tg2 x/1 + tg2 x

sin 2x = 2 sin x · cos x = 2 tg x/ 1 + tg2 x

tg 2x = 2 tg x/ 1 – tg2 x

ctg 2x = ctg 2 x – 1/ 2 ctg x

sin 3x = 3 sin x – 4 sin3 x

cos 3x = 4 cos3 x – 3 cos x

tg 3x = 3 tg x – tg3 x / 1 – 3 tg2 x

sin s cos t = (sin (s+t) + sin (s+t))/2

sin s sin t = (cos (s-t) – cos (s+t))/2

cos s cos t = (cos (s+t) + cos (s-t))/2

Формулы дифференцирования

c’ = 0                    ()’ = 1/ 2

x’ = 1                     (sin x)’ = cos x

(kx + m)’ = k         (cos x)’ = – sin x

(1/x)’ = – (1/x2)      ( ln x)’ = 1/x

(ex)’ = ex; (xn)’ = nx n-1;(log a x)’=1/x ln a

Площади плоских фигур

1. Прямоугольный треугольник

S = 1/2 a·b (a, b – катеты)

2. Равнобедренный треугольник

S = (a/2)·√ b2 – a2/4

3. Равносторонний треугольник

S = (a2/4)·√3  (a – сторона)

4. Произвольный треугольник

a,b,c – стороны, a – основание, h – высота, A,B,C – углы, лежащие против сторон; p = (a+b+c)/2

S = 1/2 a·h = 1/2 a2b sin C =

a2sinB sinC/2 sin A= √p(p-a)(p-b)(p-c)

5. Параллелограмм

a,b – стороны, α – один из углов; h – высота  S = a·h = a·b·sin α

cos (x + π/2) = -sin x

Формулы tg и ctg

tg x = sin x/ cos x; ctg x = cos x/sin x

tg(-x) = – tg x

ctg(-x) = – ctg x

tg (x + πk) = tg x

ctg (x + πk) = ctg x

tg (x ± π) = ± tg x

ctg (x ± π) = ± ctg x

tg (x + π/2) = – ctg x

ctg (x + π/2) = – tg x

sin2 x + cos2 x =1

tg x · ctg x = 1

1 + tg2 x = 1/ cos2 x

1 + ctg2 x = 1/ sin2 x

tg2 (x/2) = 1 – cos x/ 1 + cos x

cos2 (x/2) = 1 + cos x/ 2

sin2 (x/2) = 1 – cos x/ 2

11. Шар: V=4/3 πR3 = 1/6 πD3

P = 4 πR2 = πD2

12. Шаровой сегмент

V = πh2 (R-1/3h) = πh/6(h2 + 3r2)

SБОК = 2 πRh =  π(r2 + h2); P= π(2r2 + h2)

13. Шаровой слой

V = 1/6 πh3 + 1/2 π(r2 + h2)· h;

SБОК = 2 π·R·h

14. Шаровой сектор:

V = 2/3  πR2 h’ где h’ – высота сегмента, содержащего в секторе

Формула корней квадратного уравнения

(a≥0, b≥0)

(a≥0)

ax2 + bx + c = 0 (a≠0)

Если D=0, то x = -b/2a (D = b2-4ac)

Если D>0, то x1,2 = -b± /2a

Теорема Виета

x1 + x2 = -b/a

x1 · x2 = c/a

Арифметическая прогрессия

a n+1 = an + d, где n – натуральное число

d – разность прогрессии;

a n= a 1 + (n – 1)·d – формула n-го члена

Сумма n членов

Sn = ((a 1 + a n )/2) · n

Sn = ((2a 1 + (n-1)d)/2) · n

Радиус описанной окружности около многоугольника

R = a/ 2 sin 180/n

Радиус вписанной окружности

r = a/ 2 tg 180/n

Окружность

L = 2 πR    S = πR2

Площадь конуса

S БОК = πRL

S КОН= πR(L+R)

Тангенс угла — отношение противолежащего катета к прилещащему. Котангенс – наоборот.

Скачать шпаргалки по математике

Скачать всё это в компактном виде: matematika-shpory.doc.

Рекомендуем:

Источник

Удержать в голове абсолютно все изученные в курсе алгебры и геометрии формулы к моменту сдачи ЕГЭ по математике практически невозможно. Поэтому, чтобы подойти к экзамену во всеоружии, стоит «вычислить» и запомнить те из них, которые могут понадобиться для решения типовых заданий КИМов.

Формулы по базовой математике для ЕГЭ

Разработчики КИМ считают, что для решения задач математики ЕГЭ базового уровня достаточно знания формул, представленных в справочных материалах – они выдаются на экзамене в индивидуальном комплекте вместе с КИМ. В «официальную шпаргалку», которой можно пользоваться во время проведения ЕГЭ, входят:

  • таблица квадратных чисел от 0 до 99;
  • свойства арифметического квадратного корня;
  • формулы сокращенного умножения;
  • корни квадратного уравнения;
  • свойства степени и логарифма;
  • теорема Пифагора;
  • формула расчета длины окружности и площади круга;
  • расчет средней линии треугольника и трапеции;
  • радиус вписанной и описанной окружности правильного треугольника;
  • формулы расчета площади планиметрических фигур;
  • вычисление поверхностей и объемов тел;
  • основные тригонометрические функции и тождества;
  • график линейной функции;
  • геометрический смысл производной.

Понять, нужны ли еще какие-то формулы для ЕГЭ по математике, поможет решение тренировочных тестов, например, содержащихся в открытом банке заданий на сайте ФИПИ. Для подстраховки можно изучить КЭС (кодификатор элементов содержания), актуальный в текущем учебном году. В нем перечислены все темы, которые выносятся на экзамен.

Основные формулы для профильного ЕГЭ

Выпускники, планирующие сдавать профиль, ставятся в более жесткие условия, чем те, кто выбрал базовый уровень. Учитывая то, что они видят перспективу своего дальнейшего обучения по направлениям, тесно или напрямую связанным с математикой, к их знаниям предъявляются повышенные требования. В частности, на официальные справочные материалы особенно рассчитывать не приходится. Все, что в них есть, это 5 тригонометрических тождеств.

Основные формулы

Естественно, чтобы сдать профильную математику, для ЕГЭ потребуется запомнить намного больше формул. Выяснить, на какие темы нужно обратить внимание, можно по тому же алгоритму, что и для базы (из КЭС или, решая тренировочные задания).

Основываясь на данных, опубликованных на сайте ФИПИ, с большой долей вероятности потребуется знание следующих формул для сдачи ЕГЭ по профильной математике:

  • правила сокращенного умножения;
  • арифметическая и геометрическая прогрессии;
  • основы вероятностной теории;
  • свойства степеней и логарифмов;
  • азы тригонометрии (формулы двойного угла, суммы и разности аргументов; алгоритм преобразования разности и суммы в произведение; обратные функции);
  • производная (правила дифференцирования, элементарнее функции и уравнение касательной);
  • первообразная;
  • двухмерная планиметрия;
  • правила нахождения площадей геометрических фигур;
  • трехмерная стереометрия.

Опытные учителя и репетиторы собрали все формулы по математике, которые приходилось использовать на ЕГЭ в последние три года:

  1. ЕГЭ по математике – формулы для алгебры и начал анализа
  2. Формулы ЕГЭ – математика, раздел геометрия

Материалы для скачивания – в формате pdf.

Читайте также:  Витамины содержащиеся в молоке и чем они полезны

Выученные назубок формулы к ЕГЭ по математике – это только часть пути к успешной сдаче, надо еще научиться правильно применять их. Хорошую практику даст решение сложных задач.

Математика

+27
баллов
к ЕГЭ

Курсы подготовки к ЕГЭ по математике

Русский язык

+30
баллов
к ЕГЭ

Курсы подготовки к ЕГЭ по русскому языку

Обществознание

+25
баллов
к ЕГЭ

Курсы подготовки к ЕГЭ по обществознанию

Физика

+31
балл
к ЕГЭ

Курсы подготовки к ЕГЭ по физике

Английский язык

+24
балла
к ЕГЭ

Курсы подготовки к ЕГЭ по английскому языку

Биология

+29
баллов
к ЕГЭ

Курсы подготовки к ЕГЭ по биологии

Источник

Анна Малкова

Что проще запомнить с первого раза и пересказать другу – сюжет интересного фильма или большую таблицу с формулами по геометрии?

Мы хорошо запоминаем сюжеты и истории. А однообразная и скучная информация быстро вылетает из головы.

Можно запоминать формулы «как буковки». Долго, трудно и напряженно. Результат – вы сами знаете, какой.

А можно придумать историю. Понять, почему формула именно такая. Как она получилась. На что она похожа.

Например, формулы для площадей геометрических фигур. Они есть в нашем ЕГЭ-Справочнике

Площадь прямоугольника равна произведению его сторон:

Полезные формулы для егэ по математике

Чем больше стороны, тем больше площадь. Проверяйте, чтобы площадь была выражена в квадратных единицах.

Отрежем от нашего прямоугольника треугольник. И переставим этот треугольник, как на рисунке, получим параллелограмм.

Площадь параллелограмма:

Полезные формулы для егэ по математике

Поделим параллелограмм пополам. Получим два равных треугольника и формулу для  площади треугольника:

Полезные формулы для егэ по математике

Теперь трапеция. Поделим ее на два треугольника с основаниями   и  .

Площадь трапеции

Полезные формулы для егэ по математике

В формулы для длины окружности и площади круга входит число .

Длина окружности 

.

Число  – это отношение длины окружности к ее диаметру.

.

Число известно с глубокой древности. С давних времен – с доисторических – люди плели круглые корзины и лепили из глины круглые тарелки и миски. Во всяком случае, старались сделать их круглыми.

Нарисуйте древнего человека, который плетет корзинку. Он смотрит на небо и видит на нем круглое солнце. Он старается, чтобы его корзина получилась круглой, как солнце. Измерив диаметр своего изделия, наш первобытный труженик осознает, что диаметр укладывается на окружности корзины три раза, и еще немного остается! Причем это справедливо и для маленькой корзины, и для большой. Удивительное открытие!

Во сколько же раз длина окружности больше, чем ее диаметр? В  раз.

Полезные формулы для егэ по математике

площадь выражается в квадратных единицах, значит, в формуле должен быть квадрат радиуса.

Площадь круга

Формулу для площади сектора запомнить легко. Кусочки, на которые вы нарезаете круглую пиццу, – это секторы.

Полезные формулы для егэ по математике

Вспомним, что 1 градус – это  часть полного круга. Тогда площадь сектора в 1 градус равна части полного круга. А площадь сектора в градусов равна части полного круга.

Точно так же для длины дуги:

Есть отличная «запоминалка», и ее все знают.

Биссектриса – это крыса, которая бегает по углам и делит угол пополам.

Нарисуем угол, который крыса делит пополам, и эта крыса тащит за собой (на хвосте) круглый сыр. Центр окружности, вписанной в угол, лежит на биссектрисе угла.

Полезные формулы для егэ по математике

Прогоним крысу, оставим вписанную в угол окружность. Отрезки касательных, проведенных из одной точки к окружности, равны.

Полезные формулы для егэ по математике

А поскольку прямоугольные треугольники АОВ и СОВ на рисунке равны – значит, равны расстояния от точки  до точек  и . Биссектриса угла треугольника – это множество точек, равноудаленных от сторон угла.

Впишем в треугольник окружность. Окружность касается всех сторон треугольника – значит, ее центр одинаково удален от сторон АВ, ВС и АС. Центр окружности, вписанной  в треугольник, – это  точка пересечения его биссектрис.

Полезные формулы для егэ по математике

А где же находится центр окружности, описанной вокруг треугольника? Очевидно, что расстояние от этой точки до всех вершин треугольника одинаково и равно радиусу описанной окружности.

Где находятся точки, равноудаленные от концов отрезка, вы знаете. На серединном перпендикуляре к отрезку.

Полезные формулы для егэ по математике

Вот и нарисуем три серединных перпендикуляра к сторонам треугольника. А в точке, где все они пересекаются, уселась киса, чтобы быть на одинаковом расстоянии от вершин треугольника. А что делает киса? – правильно, писает! Хочет до всех вершин треугольника достать. И получается окружность, описанная вокруг треугольника.

Полезные формулы для егэ по математике

Чтобы легко запоминать формулы, придумывайте истории. Глупые, смешные, даже неприличные.  И картинки к ним рисуйте!

Теперь стереометрия. Будем искать логические связи. Ассоциации. Придумываеть себе «запоминалки».

Посмотрим на таблицу с формулами для объемов и площадей поверхности многогранников  и тел вращения.

С призмой и цилиндром все просто – их объем равен произведению площади основания на высоту.

Чем больше площадь основания, тем больше объем.

Чем больше высота, тем больше объем.

Объем призмы

Полезные формулы для егэ по математике

Объем цилиндра

Полезные формулы для егэ по математике

С объемами пирамиды и конуса тоже просто: умножаем  на площадь основания и на высоту. Как вы думаете, почему у пирамиды и у конуса похожие формулы для объема?

Объем пирамиды

Объем конуса

Полезные формулы для егэ по математике

Площадь боковой поверхности многогранника равна сумме площадей всех его граней. Сложные формулы здесь не нужны.

Теперь цилиндр. В его основаниях – два круга. Как запомнить, чему равна площадь поверхности цилиндра? Развернем боковую поверхность цилиндра и получим  прямоугольник, одна сторона которого равна , а другая равна .

Полезные формулы для егэ по математике

Площадь боковой поверхности цилиндра

Как запомнить формулу для площади боковой поверхности конуса?*

Нарисуем ракушку в форме конуса. Вот у него какая красивая боковая поверхность.

Полезные формулы для егэ по математике

А в ракушке что бывает? – жемчужинка! По-английски жемчужина: pearl. Вот и запомним формулу для площади боковой поверхности конуса:

Остались объем шара  и площадь поверхности сферы .

Что же, две формулы можно и просто выучить.

Хорошо, а как выучить формулы тригонометрии?

Есть отличный способ. Вырежьте из плотной бумаги карточки. На одной пишете левую часть формулы. На другой – правую. Перемешиваете. И собираете. Любые формулы запоминаются  легко и быстро!

И конечно, чем больше решаете задач, тем лучше запоминаются формулы.

*Лайфхак преподавателя ЕГЭ-Студии А.В. Фомичевой

Источник

Формулы сокращенного умножения

(а+b)2 = a2 + 2ab + b2

(а-b)2 = a2 – 2ab + b2

a2 – b2 = (a-b)(a+b)

a3 – b3 = (a-b)( a2 + ab + b2)

a3 + b3 = (a+b)( a2 – ab + b2)

(a + b)3 = a3 + 3a2b+ 3ab2+ b3

(a – b)3 = a3 – 3a2b+ 3ab2- b3

Свойства степеней

a0 = 1 (a≠0)

am/n = (a≥0, n ε N, m ε N)

a- r = 1/ a r (a>0, r ε Q)

a m · a n = a m + n

a m : a n = a m – n (a≠0)

(a m) n = a mn

Читайте также:  Чем полезно касторовое масло для красоты

(ab) n = a n b n

(a/b) n = a n/ b n

Первообразная

Если F’(x) = f(x), то F(x) – первообразная

для f(x)

Функция f(x) = Первообразная F(x)

k = kx + C

xn = xn+1/n+1 + C

1/x = ln |x| + C

ex = ex + C

ax = ax/ ln a + C

1/√x = 2√x + C

cos x = sin x + C

1/ sin2 x = – ctg x + C

1/ cos2 x = tg x + C

sin x = – cos x + C

1/ x2 = – 1/x

Геометрическая прогрессия

b n+1 = bn · q, где n ε N

q – знаменатель прогрессии

b n = b1 · q n – 1 – n-ый член прогрессии

Сумма n-ых членов

S n = (b n q – b 1 )/q-1

S n = b 1 (q n – 1 )/q-1

Модуль

|a| = a, если a≥0

-a, если a<0

Формулы cos и sin

sin (-x) = -sin x

cos (-x) = cos x

sin (x + π) = -sin x

cos (x + π) = -cos x

sin (x + 2πk) = sin x

cos (x + 2πk) = cos x

sin (x + π/2) = cos x

Объемы и поверхности тел

1. Призма, прямая или наклонная, параллелепипед V = S·h

2. Прямая призма SБОК = p·h, p – периметр или длина окружности

3. Параллелепипед прямоугольный

V = a·b·c; P = 2(a·b + b·c + c·a)

P – полная поверхность

4. Куб: V = a3 ; P = 6 a2

5. Пирамида, правильная и неправ.

S = 1/3 S·h; S – площадь основания

6. Пирамида правильная S =1/2 p·A

A – апофема правильной пирамиды

7. Цилиндр круговой V = S·h = πr2h

8. Цилиндр круговой: SБОК = 2 πrh

9. Конус круговой: V=1/3 Sh = 1/3 πr2h

10. Конус круговой: SБОК = 1/2 pL= πrL

Тригонометрические уравнения

sin x = 0, x = πn

sin x = 1, x = π/2 + 2 πn

sin x = -1, x = – π/2 + 2 πn

cos x = 0, x = π/2 + 2 πn

cos x = 1, x = 2πn

cos x = -1, x = π + 2 πn

Теоремы сложения

cos (x +y) = cosx ·cosy – sinx ·siny

cos (x -y) = cosx ·cosy + sinx ·siny

sin (x +y) = sinx ·cosy + cosx ·siny

sin (x -y) = sinx ·cosy – cosx ·siny

tg (x ±y) = tg x ± tg y/ 1 -+ tg x ·tg y

ctg (x ±y) = tg x -+ tg y/ 1± tg x ·tg y

sin x ± sin y = 2 cos (x±y/2)· cos (x-+y/2)

cos x ± cosy = -2 sin (x±y/2)· sin (x-+y/2)

1 + cos 2x = 2 cos2 x; cos2x = 1+cos2x/2

1 – cos 2x = 2 sin2 x; sin2x = 1- cos2x/2

6. Трапеция

a,b – основания; h – высота, c – средняя линия S = (a+b/2)·h = c·h

7. Квадрат

а – сторона, d – диагональ S = a2 = d2/2

8. Ромб

a – сторона, d1, d2 – диагонали, α – угол между ними S = d1d2/2 = a2sinα

9. Правильный шестиугольник

a – сторона S = (3√3/2)a2

10. Круг

S = (L/2) r = πr2 = πd2/4

11. Сектор

S = (πr2/360) α

Правила дифференцирования

( f (x) + g (x) )’ = f ’(x) + g’(x)

(k(f(x))’ = kf ’ (x)

(f(x) g(x))’ = f ’(x)·g(x) + f(x)·g’(x)

(f(x)/g(x))’=(f ’(x)·g(x) – f(x)·g’(x))/g2 (x)

(xn)’ = nx n-1

(tg x)’ = 1/ cos2 x

(ctg x)’ = – 1/ sin2 x

(f (kx + m))’ = kf ’(kx + m)

Уравнение касательной к графику функции

y = f ’(a) (x-a) + f(a)

Площадь S фигуры, ограниченной прямыми x=ax=b

S = ∫( f(x) – g(x)) dx

Формула Ньютона-Лебница

∫ab f(x) dx = F(b) – F (a)

t
π/4
π/2
3π/4
π

cos
√2/2
0
-√2/2
1

sin
√2/2
1
√2/2
0

t
5π/4
3π/2
7π/4

cos
-√2/2
0
√2/2
1

sin
-√2/2
-1
-√2/2
0

t

π/6
π/4
π/3

tg
0
√3/3
1
√3

ctg

√3
1
√3/3
 

in x = b x = (-1)n arcsin b + πn

cos x = b x = ± arcos b + 2 πn

tg x = b x = arctg b + πn

ctg x = b x = arcctg b + πn

Теорема синусов: a/sin α = b/sin β = c/sin γ = 2R

Теорема косинусов: с2=a2+b2-2ab cos y

Неопределенные интегралы

∫ dx = x + C

∫ xn dx = (x n +1/n+1) + C

∫ dx/x2 = -1/x + C

∫ dx/√x = 2√x + C

∫ (kx+b) = 1/k F(kx + b)

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ dx/sin2 x = -ctg + C

∫ dx/cos2 x = tg + C

∫ x r dx = x r+1/r+1 + C

Логарифмы

1. loga a = 1

2. loga 1 = 0

3. loga (bn) = n loga b

4. log An b = 1/n loga b

5. loga b = log c b/ log c a

6. loga b = 1/ log b a

Градус

30
45
60

sin
0
1/2
√2/2
√3/2

cos
1
√3/2
√2/2
1/2

tg
0
√3/3
1
√3

t
π/6
π/3
2π/3
5π/6

cos
√3/2
1/2
-1/2
-√3/2

sin
1/2
√3/2
√3/2
1/2

90
120
135
150
180

1
√3/2
√2/2
1/2
0

0
-1/2
-√2/2
-√3/2
-1


-√3
-1
√3/3
0

t
7π/6
4π/3
5π/3
11π/6

cos
-√3/2
-1/2
1/2
√3/2

sin
-1/2
-√3/2
-√3/2
-1/2

Формулы двойного аргумента

cos 2x = cos2x – sin2 x = 2 cos2 x -1 = 1 – 2 sin2 x = 1 – tg2 x/1 + tg2 x

sin 2x = 2 sin x · cos x = 2 tg x/ 1 + tg2 x

tg 2x = 2 tg x/ 1 – tg2 x

ctg 2x = ctg 2 x – 1/ 2 ctg x

sin 3x = 3 sin x – 4 sin3 x

cos 3x = 4 cos3 x – 3 cos x

tg 3x = 3 tg x – tg3 x / 1 – 3 tg2 x

sin s cos t = (sin (s+t) + sin (s+t))/2

sin s sin t = (cos (s-t) – cos (s+t))/2

cos s cos t = (cos (s+t) + cos (s-t))/2

Формулы дифференцирования

c’ = 0 ()’ = 1/ 2

x’ = 1 (sin x)’ = cos x

(kx + m)’ = k (cos x)’ = – sin x

(1/x)’ = – (1/x2) ( ln x)’ = 1/x

(ex)’ = ex; (xn)’ = nx n-1;(log a x)’=1/x ln a

Площади плоских фигур

1. Прямоугольный треугольник

S = 1/2 a·b (a, b – катеты)

2. Равнобедренный треугольник

S = (a/2)·√ b2 – a2/4

3. Равносторонний треугольник

S = (a2/4)·√3 (a – сторона)

4. Произвольный треугольник

a,b,c – стороны, a – основание, h – высота, A,B,C – углы, лежащие против сторон; p = (a+b+c)/2

S = 1/2 a·h = 1/2 a2b sin C =

a2sinB sinC/2 sin A= √p(p-a)(p-b)(p-c)

5. Параллелограмм

a,b – стороны, α – один из углов; h – высота S = a·h = a·b·sin α

cos (x + π/2) = -sin x

Формулы tg и ctg

tg x = sin x/ cos x; ctg x = cos x/sin x

tg(-x) = – tg x

ctg(-x) = – ctg x

tg (x + πk) = tg x

ctg (x + πk) = ctg x

tg (x ± π) = ± tg x

ctg (x ± π) = ± ctg x

tg (x + π/2) = – ctg x

ctg (x + π/2) = – tg x

sin2 x + cos2 x =1

tg x · ctg x = 1

1 + tg2 x = 1/ cos2 x

1 + ctg2 x = 1/ sin2 x

tg2 (x/2) = 1 – cos x/ 1 + cos x

cos2 (x/2) = 1 + cos x/ 2

sin2 (x/2) = 1 – cos x/ 2

11. Шар: V=4/3 πR3 = 1/6 πD3

P = 4 πR2 = πD2

12. Шаровой сегмент

V = πh2 (R-1/3h) = πh/6(h2 + 3r2)

SБОК = 2 πRh = π(r2 + h2); P= π(2r2 + h2)

13. Шаровой слой

V = 1/6 πh3 + 1/2 π(r2 + h2)· h;

SБОК = 2 π·R·h

14. Шаровой сектор:

V = 2/3 πR2 h’ где h’ – высота сегмента, содержащего в секторе

Формула корней квадратного уравнения

(a≥0, b≥0)

(a≥0)

ax2 + bx + c = 0 (a≠0)

Если D=0, то x = -b/2a (D = b2-4ac)

Если D>0, то x1,2 = -b± /2a

Теорема Виета

x1 + x2 = -b/a

x1 · x2 = c/a

Арифметическая прогрессия

a n+1 = a n + d, где n – натуральное число

d – разность прогрессии;

a n = a 1 + (n – 1)·d – формула n-го члена

Сумма n членов

S n = ((a 1 + a n )/2) · n

S n = ((2a 1 + (n-1)d)/2) · n

Радиус описанной окружности около многоугольника

R = a/ 2 sin 180/n

Радиус вписанной окружности

r = a/ 2 tg 180/n

Окружность

L = 2 πR S = πR2

Площадь конуса

S БОК = πRL

S КОН = πR(L+R)

Тангенс угла — отношение противолежащего катета к прилещащему. Котангенс – наоборот.

Источник