Полезные ископаемые из магматических горных пород

Полезные ископаемые из магматических горных пород thumbnail
Полезные ископаемые из магматических горных пород

ТОП 10:

Фактор магмы – это высокая температура (свыше 1000 градусов) и высокое давление (тысячи атмосфер) расплавленной массы, паров и растворов. Внедряясь в верхние слои земной коры, магма разрывает и раздвигает, разогревает и уплотняет их. На контакте с высокотемпературной магмой вмещающие породы подвергаются перекристаллизации с образованием новых минеральных комплексов. Из песчаников и глин образуются роговики, из известковых пород — скарновые новообразования. Скарны представляют собой метасоматические высокотемпературные железо-известково-магнезиальные силикаты, алюмосиликаты, образующиеся под воздействием высокотемпературных расплавов магмы и выделяющихся из нее паров и минеральных растворов на вмещающие известковые породы. С ними связано образование новых высокотемпературных минералов: шеелита (СаWO4), молибденита (MоO2), гранатов, магнетита (Fe3O4) и др.

Остывание магматического очага происходит медленно, поэтапно, сопровождается тектоническими подвижками, образованием трещин и заполнением их новыми порциями магмы, гидротермальными растворами и жильными образованиями. Такова общая модель, ее следует дополнить информацией о составе магмы и размерах интрузивных массивов (табл. 12).

Таблица 12

Магматические породы и полезные ископаемые

Магматические формации Месторождения полезных ископаемых Примеры
1. Гранитная, гранодиоритная. Малые интрузии, пегматиты, аплиты, сиениты Цветные и редкие металлы, сульфиды, золото, олово, вольфрам Верхояно-Колымская область Сихотэ-Алинь и др.
2. Основные и ультраосновные интрузии Хромиты, платина, титано-магнетиты Кимперсай, Урал
3. Спилито – кератофировая, зеленокаменная Медные колчеданы, железо, хром Восточный Урал

Железные руды. Большое количество месторождений железных руд, генетически связанных с магматическими породами, установлено на Урале. С габбровой формацией связаны титано-магнетитовые руды месторождений гор Благодать, Высокая, Качканар, Магнитная. Магнетитовые железные руды в скарнах вулканических трубок выявлены в Ангаро-Илимском железорудном бассейне. Такие же месторождения железных руд, состоящих из магнетитов (Fe3O4), были найдены на Кавказе (Дашкесанское месторождение), на Алтае, Центральном Казахстане (Атасуйская группа месторождений).

Медные руды. На склоне Южного и Среднего Урала медное оруденение связано с палеозойской зеленокаменной формацией, представлено медным колчеданом (CuFeS2) с примесями сульфидов сурьмы, мышьяка, висмута, кобальта, кадмия и др. Месторождения приурочены к контакту гранодиоритов с эффузивно-осадочный толщей девона. Главные минералы представлены халкопиритом, халькозином, борнитом. В Центральном Казахстане находится Джезгаззганское медное месторождение, приуроченное к песчано-сланцевой толще девон-карбона. Медистые минералы представлены халькопиритом, малахитом (Cu2(OH2)CO3), азуритом (Cu3(OH)CO3), купритом (Cu2O). Коунрадское медное месторождение связано с кислыми интрузиями. В Армении крупные месторождения медных руд связаны с юрскими эффузивами и гранодиоритами. В Калба-Нарымской зоне Алтая медно-пирротиновое оруденение приурочено к сланцам верхнего девона, прорванным гранитоидами. В Камчатско–Корякской складчатой области месторождения меди связаны с зеленокаменными породами верхнего мела.

Полиметаллическое оруденение составляет основную ценность Рудного Алтая, приурочено к эффузивно–пирокластическим толщам девонского возраста. Наиболее известными среди них являются Змеиногорское, Зыряновское, Сокольное месторождения. Кроме сульфидов железа (FeS2), свинца (PbS), цинка (ZnS), и меди (CuFeS2) полиметаллические руды Алтая содержат значительное количество серебра и кадмия. В Центральном Казахстане полиметаллические месторождения приурочены к скарновым зонам, образовавшимся на контакте карбонатных и эффузивных толщ с гранитоидными интрузиями герцинского возраста. На Тянь-Шане полиметаллические руды приурочены к докембрию и палеозою, генетически связаны с герцинскими интрузиями, обогащены сульфидами мышьяка (FeA5S), висмута (Bi2S3). На Памире полиметаллические руды связаны с мезозойскими интрузиями. На Кавказе известны два полиметаллических месторождения. Буронское месторождение пирито-пирротиновых руд, находится в палеозойских сланцах, генетически связаны с оперяющими трещинами крупного разлома. Руды содержат значительную примесь редких и рассеянных химических элементов. Садонское свинцово-цинковое месторождение приурочено к юрскими кератофирам и гранитам. На Сихотэ-Алине полиметаллическое месторождение Тетюхе находится в скарновой зоне между триасовыми известняками и кайнозойскими интрузиями. Рудными минералами в них являются галенит (PbS), сфалерит (ZnS) и геденбергит (CaZn·Si2O6).

Вольфрам, молибден, олово. В центральной части Большого Кавказа (Кабардино-Балкария) расположено вольфрамово-молибденовое месторождение Тырны-Ауз. Оруденение локализовано в скарновой зоне контакта палеозойских известняков и вернемеловых гранодиоритов. Разрабатывается с 1940 года. В Восточном Забайкалье разрабатывается Шерловогорское месторождение сульфидов молибдена (МoS2), вольфрама (FeMn)·WoO4, сурьмы (Sb2S3), ртути (HqS), мышьяка (AsS). Месторождение связано с мезозойскими гранитами. В Верхояно-Колымской мезозойской складчатой области вольфрамовые оруденение генетическими связано с юрскими гранитоидными интрузиями, содержит минералы олова (SnO2), меди (CuFeS2), мышьяка (FeAsS), золота (Au). В области кайнозойской складчатой области Сихотэ-Алиня обособлена золото-вольфрамо-оловянная зона, приуроченная к скарновой зоне между триасовыми известняками и кайнозойскими интрузиями.

Олово. В Томь-Колыванской складчатой области месторождение прожилков сульфидов с касситеритом (SnO2) приурочено к массиву гранитов, слагающих Колыванскую возвышенность. В Верхоянско-Колымской области мезозоид редкометальное оруденение (Au, Pb, Wo, Mo, As, Sb, Sn) генетически связано с юрскими гранитоидами, в Восточном Забайкалье – с мезозойскими гранитами, на Сихотэ-Алине – с контактовой зоной гранитоидных интрузий.

Золото. Наиболее крупные золотоносные провинции России находятся в Восточной Сибири. В Алданской золотоносной провинции жильное золото приурочено к кислым и щелочным интрузиям юрского возраста. Это – Верхне-Олекминское и Центрально-Алданское месторождения. В Саланро-Саянской складчатой области оруденение золота связано с интрузиями диоритов и кварцевых альбитофиров нижнего палеозоя. На Алтае месторождения золота приурочены к Калбинскому тектоническому поясу, к кварцевым жилам, секущим девон-каменноугольные осадочно-эффузивные толщи (Березовское месторождение). В Центральном Казахстане рудопроявления золота связаны с интрузиями докембрия Кокчетавского антиклинория.

Читайте также:  Для чего полезна вода в которой варился картофель

В Забайкалье известны коренные и россыпные месторождения золота (Балей, Дарасун), связанные с кислыми интрузиями юрско-мелового возраста. В Сихотэ-Алиньской складчатой области золоторудные месторождения приурочены к Центральному рудному поясу, ассоциируются с интрузиями гранитов кайнозойского возраста.

Платина генетически связана с скоплениями хромитовых (FeCr2O4) руд габбро-перидотит-дунитовых пород Среднего Урала. Вместе с платиной в них присутствуют редкие металлы: палладий, иридий и др.

Хром. Рудные тела хромитов в виде гнезд и линз выявлены в массивах ультраосновных пород Южного и Среднего Урала.

Титан связан с породами габбровой формации, в которых он вместе с железом образует титано-магнетитовые руды – FeTiO2.

Ванадий встречается вместе с титаном.

Никель вместе с медью образует медно-никелевые руды. Одним из примеров месторождений подобного типа является Норильское медно-никелевое месторождение, генетически связанное с сибирскими траппами. Месторождение приурочено к пластовой интрузии долерита.

Кобальт. Кабальт-никелевое оруденение известно на полиметаллических и медно-пирротиновых месторождениях и в серпентинитах Калбинского хребта на Алтае.

Апатит (Ca5(PO4)3·OH). В массивах щелочных пород докембрия Кольского полуострова находятся крупнейшие в мире запасы апатито-нефелиновых пород. Кроме фосфора в них содержатся титан, ванадий, калий, фтор. Нефелин (Na3K(AlSiO4)4) используется для получения алюминия.

Алмаз. На северо-востоке Сибирской платформы выявлены Вилюйский и Олененский алмазоносные районы. Кристаллы алмаза содержатся в ультраосновных горных породах – кимберлитах и эруптивных брекчиях трубок взрыва «Мир» и «Зарница».

Ртуть. Месторождения ртути (киноварн – HqS) в Салаиро-Саянской области приурочены к глубинным разломам.

Графиты. В Тунгусском бассейне графиты образовались из каменных углей под воздействием пластовых интрузий траппов. На Алтае образование графита объясняется воздействием гранитной магмы на углистые сланцы верхнего девона-нижнего карбона.

Асбест. Месторождения хризотил-асбеста выявлены в серпентинитах Урала и Восточных Саян.

Тальк. Месторождения талька установлены в серпентинитах восточного склона Урала.

Слюда. Месторождения слюды выявлены в пегматитах Среднего Урала.

Корунд. Залежи корунда (Al2O3) и наждака выявлены в пегматитах Кыштымского района Южного Урала.

Драгоценные камни. Урал является одним из главных поставщиков драгоценных и цветных камней: изумрудов, топаза, аметиста, турмалина и др. Алмазы добываются в Якутии.

Облицовочные и поделочные камни. Горные районы Карелии, Урала, Алтая, Саян, Восточной Сибири богаты всеми видами строительных, облицовочных и поделочных камней: гранитов, порфиров, мраморов. Особой ценностью являются уральский малахит, орская яшма, горные хрустали Приполярного и Полярного Урала.



Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 марта 2020;
проверки требуют 3 правки.

Магматические горные породы (магматиты) — конечные продукты магматической деятельности, возникшие в результате затвердевания природного расплава (магмы, лавы). Переход расплава в твёрдое состояние сопровождается кристаллизацией вещества. Магматические породы играют важную роль в строении земной коры, образуя геологические тела различных форм и размеров, составов и структур.

Магматиты представляют один из важнейших типов горных пород наряду с осадочными, метаморфическими, а также гидротермально-метасоматическими образованиями. Встречаются в широком диапазоне геологических условий: щиты, платформы, орогены, океаническая кора и др. Магматические и метаморфические породы по объёму составляют 90-95 % верхней (16 км) земной коры[1]. Магматические породы образуют около 15 % современной поверхности Земли[2].

Основы систематики[править | править код]

Гранит — плутоническая горная порода с однородной (афировой) текстурой и полнокристаллической структурой

Базальт оливиновый — вулканическая горная порода с порфировой текстурой и неполнокристаллической структурой базиса

По относительной глубине застывания расплава выделяют 3 класса магматических пород:[3]

  • плутонические — застывшие на глубине (плутониты);
  • гипабиссальные — застывшие на небольших глубинах[4];
  • вулканические — застывшие на поверхности (вулканиты) или вблизи неё (субвулканиты)[5].

Плутонический класс объединяют породы, формировавшиеся в условиях мезоабиссальной и абиссальной фаций. При этом границы фаций глубинности определены не однозначно. Так, для абиссальных обстановок может указываться от 6-8 км[6] до 3-5 — 10-15 км[7]. Основным признаком глубинности ввиду простоты диагностики является степень раскристаллизации вещества: полная, скрытая, неполная. Плутониты отличаются полнокристаллической структурой, гипабиссальные породы — скрытокристаллической, реже неполнокристаллической.

Вулканические породы обладают неполнокристаллической, либо стекловатой структурой. Реже встречаются скрытокристаллические разности. Для вулканитов, субвулканитов и гипабиссальных образований характерны порфировые текстуры, образованные крупными вростками кристаллов (порфиров) в однородной массе породы.

Основой более глубокой систематики служит ряд петрохимических и минералогических признаков. При этом выделяют отряды, семейства, виды и разновидности горных пород. Для определения верхних рангов используют отношения весовых содержаний кремнезёма (SiO2) и «щелочей» (Na2O + K2O) в горных породах.

  • Отряды (ряды) выделяют по содержанию в горных породах кремнезёма (по «кислотности», по «кремнезёмистости»). Всего определено 6 отрядов. В отдельных случаях выделяют также отряд редких некремнезёмистых пород.
  • Подотряды магматических пород выделяют по содержанию суммы щелочей (Na2O + K2O). По «щелочности» определены 3 подотряда (нормальный, субщелочной и щелочной). Иногда выделяют также низкощелочной подотряд.
  • Семейства магматических пород занимают, таким образом, определённые поля на диаграмме «сумма щелочей — кремнезём» (Total Alkali Silica, TAS), границы между которыми установлены подкомиссией по систематике магматических пород Международного союза геологических наук (МСГН). Имена всех семейств магматических пород нормальнощелочного и щелочного рядов приведены в классификационной таблице.
  • Виды магматических пород определяются их модальным минеральным составом. Для пород, не содержащих более 90 % темноцветных минералов и обладающих хорошей кристалличностью (то есть в основном для абиссальных и гипабиссальных), видовая принадлежность устанавливается на диаграмме QAPF (англ. Quartz — Alkali feldspar — Plagioclase — Feldspathoid (Foid)). В противном случае используется диаграмма TAS.
  • Разновидности магматических пород не регламентируются и выделяются геологами по необходимости.
Читайте также:  Срок полезного использования на новое оборудование

Формы залегания[править | править код]

Формы залегания плутонических и гипабиссальных тел

Внедрение магмы в толщу горных пород приводит к образованию интрузивных тел. В зависимости от их отношения с вмещающими образованиями выделяют:

  • Согласные (конкордантные) интрузивные тела, внедрившиеся между отдельными слоями толщи вмещающих пород. Форма таких тел зависит от структуры вмещающей толщи (лакколиты, лополиты, факолиты, этмолиты, бисмалиты, силлы).
  • Несогласные (дискордантные) интрузивные тела, прорывающие слои толщи вмещающих пород и не зависящие от их структуры (батолиты, штоки, дайки, апофизы, хонолиты).

Формы залегания тел вулканических пород

Излившаяся на поверхность лава образует эффузивные тела, среди которых выделяются: лавовый покров, лавовый поток, некк (жерловина), вулканический (экструзивный) купол (пик, игла) и диатрема (трубка взрыва), вулканический конус, стратовулкан, щитовидный вулкан. По выражению в рельефе формы залегания эффузивных пород могут быть как положительными (покровы, потоки, жерловины, вулканические купола, диатремы, вулканические конусы, стратовулканы, щитовидные вулканы), так и отрицательными (кратеры, маары, лавовые колодцы, кальдеры).

Минеральный состав[править | править код]

В составе магматических пород выделяют породообразующие и акцессорные минералы. Породообразующие минералы представлены различными алюмосиликатами и силикатами. Среди них выделяют светлоокрашенные (син. лейкократовые) и темноцветные (син. меланократовые, цветные) разновидности. Светлоокрашенные не содержат (или содержат только примесные) магний и железо, тогда как для темноцветных характерно вхождение этих элементов в состав кристаллических решеток. Соответственно, выделяют салические (от Si, Al) и мафические (от Mg, Fe) минералы.

  • Типичные салические минералы: полевые шпаты, кварц, фельдшпатоиды, светлые слюды (мусковит и др.).
  • Типичные мафические минералы: оливины, пироксены, амфиболы, темноцветные слюды (биотит и др.).

Акцессорные минералы слагают менее 1-5 % объёма породы, однако их присутствие отмечается повсеместно. Среди акцессорий часто встречаются: циркон, апатит, рутил, монацит, ильменит, хромит, титанит, ортит, магнетит, хромит, пирит, пирротин и мн.др.

Характерные особенности минерального состава

Для пород нормального ряда характерно присутствие полевых шпатов и кварца и «…отсутствие фоидов (фельдшпатоидов) и щелочных темноцветных минералов, а также пироксенов и амфиболов с высоким содержанием титана»,[8] типичных в щелочных магматитах. Кислотность (кремнезёмистость), в первую очередь, отражается на содержании кварца (чем кислее — тем его больше), а также составе плагиоклаза: базиты содержат богатые кальцием, тогда как кислые магматиты — богатые натрием его разновидности.

Кварц образуется, когда содержание SiO2 в магме превышает необходимое для образования силикатов и алюмосиликатов. Кварц не встречается в магматических фазах совместно с оливином или нефелином. Оливин присутствует, главным образом, в ультрабазитах и выделяется из магм, в которых содержание SiO2 недостаточно для образования пироксенов. В противном случае оливин превращается в энстатит:

Mg2SiO4 + SiO2 = Mg2Si2O6
Форстерит………Энстатит

Аналогично образуется нефелин, который присутствует лишь в щелочных породах, недосыщенных кремнезёмом. В противном случае образуется альбит:

NaAlSiO4 + 2SiO2 = NaAlSi3O8
Нефелин………………Альбит

Для пород нормального ряда ведущими типоморфными минеральными парагенезами являются следующие:

  • Ультрабазиты. Главные минералы — оливины и пироксены. Содержащие их в сравнимых количествах, породы называются перидотитами. Существенно оливиновые называются в зависимости от акцессориев: оливинит, если присутствует магнетит; дунит, если есть хромит. Кроме того, весьма характерны ортопироксены (энстатит, бронзит или гиперстен).
  • Базиты. Главные минералы — оливины, пироксены, основные плагиоклазы. В подчиненном количестве может быть роговая обманка. В зависимости от того, какой пироксен преобладает различают: габбро, если доминирует клинопироксен (авгит или диопсид); нориты, если ортопироксен; габбронориты, если и тот и другой представлены в равной мере.
  • Средние. Главные минералы — средние плагиоклазы, амфиболы (роговая обманка). Характерными акцессориями являются биотит и кварц. Широко распространенными породами этого семейства являются диориты (андезиты), а также субщелочные аналоги — сиениты, состоящие из калиевого полевого шпата с темноцветными (роговой обманкой и/или биотитом, диопсидом, эгирин-авгитом).
  • Кислые. Главные минералы — кварц, калиевые полевые шпаты, кислые плагиоклазы. В подчиненных количествах обычно биотит и/или роговая обманка. Широко распространенными породами этого семейства являются граниты (риолиты), а также переходные к средним — гранодиориты (дациты), — характеризующиеся увеличением содержаний темноцветных минералов.

Связь цвета и состава

Для пород нормального и умеренно-щелочного рядов характерны светлые окраски при относительно высоких содержаниях кремнезёма и тёмные до черных при низких. Количество темноцветных минералов, подсчитанное в объемных процентах, называют цветным числом. Ультрабазиты обычно имеют чёрный цвет (95-100 % тёмноокрашенных минералов), базиты — темно-серый до чёрного (~50 %). Породы среднего состава характеризуются серыми окрасками (~30 %). Кислые и ультракислые магматиты отличаются светло-серым цветом (<10 %). Очень часто наблюдаются отклонения от указанных значений, в связи с локальными особенностями магматизма, эпигенетическими изменениями и прочими факторами, влияющими на окраску породы. Типично замещение породообразующих минералов новообразованными при выветривании. Плагиоклазы, чаще всего, замещаются серицитом и цеолитами; пироксены и амфиболы — хлоритом и эпидотом. Визуальный осмотр с подсчетом цветного числа, а также определением текстуры (порфировой или афировой) и структуры (полно- или неполнокристаллической) позволяет делать обоснованное предположение о составе породы не только специалистам, но также и любителям.

Читайте также:  Что полезно для человека с диабетом

Химический состав[править | править код]

В химическом составе магматитов выделяют петрогенные и редкие химические элементы. Петрогенные элементы определяют фазовый (минеральный) состав породы, в то время как редкие входят в эти фазы в виде примесей. Состав магматитов, чаще всего, отражают концентрациями ряда элементов в форме их оксидов (петрогенных окислов). «Главными оксидами магматических образований являются: SiO2, Al2O3, Fe2O3, FeO, MgO, CaO, Na2O и K2O, H2O»[9] . Процентное содержание кремнезёма в породе служит определённым критерием её кислотности, в связи с чем термином «кислая порода» стали обозначать породы, богатые, а «основная порода» — бедные кремнезёмом, но обогащенные основаниями — СаО, MgO и FeO. Обратная зависимость между концентрациями этих оснований и кремнезёма весьма ярка выражена в ряду кислотности пород.

Распространение[править | править код]

LIP на карте геологических провинций

Магматические породы, совместно с метаморфическими и переходными ультраметаморфическими преобладают в составе земной коры. На современной поверхности они широко представлены в областях длительного воздымания (кристаллических щитах и н.др.), подвижных поясах, больших магматических провинциях, областях активного вулканизма. Наибольшим распространением пользуются породы нормального и субщелочного рядов. Причем базиты и ультрабазиты преобладают, слагая низы континентальной коры и почти целиком формируя кору океанического типа: базиты слагают, соответственно, «базальтовый» слой и верхи нижнего, а ультрабазиты — низы нижнего слоя, где представлены полнокристаллическими разностями. Гранитоиды широко развиты в составе массивной континентальной коры и формируют её верхний «гранито-гнейсовый» слой. Нижний слой континентальной коры по В. В. Белоусову имеет «гранулит-базитовый» состав[10] , тогда как её средний модальный состав по Гольдшмидту — «андезитовый» (средний по содержанию кремнезема и нормальный по щелочам). Кроме того, имеют место участки земной коры, в пределах которых магматизм проявился экстремально быстро и широко. Такие области получили название «больших магматических провинций» (large igneous province, LIP). С 11-ю такими провинциями связывают массовые вымирания живых организмов в истории Земли. В LIP входят как «большие плутоногенные провинции», так и «большие вулканогенные», в том числе трапповые поля (к примеру, Сибирские траппы).

Происхождение[править | править код]

Магматические породы являются конечными продуктами магматической деятельности, обусловленной глобальным и неравномерным тепломассапереносом из мантии к поверхности планеты. Магматические расплавы зарождаются в нижней коре и мантии вследствие уменьшения давления и/или повышения температуры. Являясь менее плотными по отношению к вмещающим образованиям, они стремятся «всплыть» на поверхность. В процессе подъёма происходит дифференциация магмы, что приводит к наблюдаемому разнообразию составов магматических пород. В случае достижения поверхности расплав извергается по эффузивном и/или эксплозивному механизму.

Выделяются несколько генетических серий магматических пород, состав которых эволюционирует от родоначальной глубинной магмы, отделяющейся от твердой фазы мантии и глубокой коры.

Примечания[править | править код]

  1. Prothero, Donald R.; Schwab, Fred. Sedimentary geology : an introduction to sedimentary rocks and stratigraphy (англ.). — 2nd. — New York: Freeman, 2004. — P. 12. — ISBN 978-0-7167-3905-0.
  2. Wilkinson, Bruce H.; McElroy, Brandon J.; Kesler, Stephen E.; Peters, Shanan E.; Rothman, Edward D. Global geologic maps are tectonic speedometers—Rates of rock cycling from area-age frequencies (англ.) // Geological Society of America Bulletin (англ.)русск. : journal. — 2008. — Vol. 121, no. 5—6. — P. 760—779. — doi:10.1130/B26457.1.
  3. ↑ Петрографический кодекс России: магматические, метаморфические, метасоматические, импактные образования. — 3 изд.. — СПб: ВСЕГЕИ, 2009. — 197 с.
  4. Гипабиссальные горные породы — статья из Большой советской энциклопедии. 
  5. ↑ Эффузивные горные породы // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  6. Д. И. Горжевский, В. Н. Козеренко. . — 1965.
  7. В. И. Смирнов. . — 1982.
  8. Ушакова Е.Н., Шелепаев Р.А., Изох А.Э., Сухоруков В.П., Никитин А. А. Магматические горные породы: систематика, номенклатура, структуры и текстуры (недоступная ссылка). Геологический Музей НГУ. Дата обращения 11 сентября 2016. Архивировано 12 сентября 2016 года.
  9. ↑ Саранчина, Галина Михайловна — Породообразующие минералы : (Методика определения кристаллоопт. констант, характеристика минералов) : Учеб. пособие — Search RSL. search.rsl.ru. Дата обращения 11 сентября 2016.
  10. Хаин В.Е. Ломизе М.Г. Геотектоника с основами геодинамики. Ozon.ru. Дата обращения 30 октября 2015.

Литература[править | править код]

  • Заварицкий А. Н. Изверженные горные породы. — М.: Издательство АН СССР, 1956. — 480 с.
  • R. W. Le Maitre (editor) (2002) Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks., Cambridge, Cambridge University Press ISBN 0-521-66215-X

Ссылки[править | править код]

  • Магматические горные породы (Общая петрография)
  • Магматические горные породы
  • Таблица магматических горных пород для занятий со школьниками

Источник