Полезные ископаемые на планетах солнечной системы
За последние 100 лет численность населения возросла с 1,5 млрд до более чем 7 млрд человек — это обострило борьбу за и без того ограниченные ресурсы Земли. Технологические компании предлагают выход из этой ситуации — добывать полезные ископаемые в космосе. Однако ученые считают, что ископаемых в Солнечной системе может хватить максимум на 500 лет — затем они истощатся и получать новые ресурсы будет попросту неоткуда: расстояние до ближайшей к системе звезды составляет 4,2 световых года. «Хайтек» рассказывает, почему ученые предлагают решить проблему радикально — превратить 85% Солнечной системы в заповедник, реально ли добыть полезные ископаемые и доставить их на Землю.
По данным Геологической службы США (USGS), темпы использования железа в промышленности удваиваются каждые 20 лет. Если в 1800 году промышленности по всему миру требовалось 450 тыс. т этого металла, то в 1994 году — уже 900 млн т. К 2016 году этот показатель вырос до 2,2 млрд т — и продолжает расти до сих пор.
Если люди начнут добывать ископаемые на планетах, лунах, астероидах и других телах в Солнечной системе, они частично истощатся примерно через 460 лет, подсчитали ученые Смитсоновской астрофизической обсерватории.
Исследователи обнаружили, что ежегодный прирост в 3,5% израсходует восьмую часть ресурсов Солнечной системы за 400 лет. В этот момент у человечества будет всего 60 лет, чтобы ограничить добычу и избежать полного истощения запасов полезных ископаемых.
«Если мы не задумаемся об этом сейчас и пойдем осваивать ближайшие космические тела, мы продвинемся вперед, а через несколько сотен лет столкнемся с экстремальным кризисом, намного хуже, чем сейчас на Земле. Как только вы заканчиваете добывать ресурсы в Солнечной системе, вам больше некуда идти», — рассказывает Мартин Элвис, старший астрофизик в Смитсоновской астрофизической обсерватории в Кембридже.
У этого ограничения есть две цели: защитить еще не освоенные миры от наихудших проявлений человеческой деятельности и избежать катастрофического будущего, в котором все ресурсы, находящиеся в пределах его досягаемости, будут использованы на постоянной основе. При этом Элвис отмечает, что восьмая часть всего железа в Поясе астероидов более чем в миллион раз превышает оценочные запасы железной руды на Земле, которых может хватить на несколько веков.
Космические тела в Солнечной системе
Конкретные области, добыча полезных ископаемых в которых окажется под запретом, астрофизики не называют. Этот вопрос требует более детального изучения, поясняют авторы исследования в статье в журнале Acta Astronautica.
Какие запасы полезных ископаемых существуют в Солнечной системе?
Космические тела в Солнечной системе интересуют ученых и предпринимателей с точки зрения добычи трех типов ресурсов — воды, металлов и газов. Вода необходима по большей части для будущих колонизаторов — как в качестве источника влаги для живых организмов, так и в виде топлива для космических кораблей при расщеплении на кислород и водород. Газы и тяжелые металлы (железо, никель, молибден, кобальт, золото, платина и другие) представляют интерес для Земли, где их запасы близки к истощению.
Луна
Естественный спутник Земли не представляет большого интереса в качестве объекта по добыче полезных ископаемых. В первую очередь, потому что Луна представляет собой базальтовое тело — то есть, по сути, ту же скалу, которая образует дно океана.
Самую большую ценность представляет собой гелий-3 — самый легкий из изотопов гелия, который в большом количестве (по разным оценкам, от 500 тыс. т до 2,5 млн т) содержится в поверхностном слое спутника, но редко встречается на Земле. Элемент может использоваться в электростанциях в качестве топлива, практически не загрязняющего окружающую среду. Гипотетически, при термоядерном синтезе, когда в реакцию вступает 1 т гелия-3 с 0,67 т дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн т нефти.
Поверхность Луны богата гелием-3, который можно использовать как экологичный источник энергии на Земле
Однако Луна, как и Антарктида, защищена международным правом — ни одна страна не может претендовать на права на естественный спутник Земли. Кроме юридических, существуют физические ограничения — скорость убегания Луны. Чтобы вывести 1 кг материала из гравитации спутника, его необходимо разогнать до 2,4 км/с. Для сравнения, для того же самого результата на комете 67P/Чурюмова — Герасименко груз необходимо разогнать лишь до 1 м/c.
Марс
Вторая по близости к Земле планета, Марс, по геологическому строению похожа на нашу. Это значит, что на ней можно обнаружить все основные соединения, такие как железо, алюминий, вольфрам и так далее. Исследователи также обнаружили на Красной планете следы лития, меди, золота, цинка, никеля, кобальта, ниобия и других элементов. Другими словами, можно случайным образом указывать на элементы периодической таблицы Менделеева и с большой долей вероятности угадать те, которые можно найти на Марсе.
Ровер Opportunity также обнаружил на Марсе гематитовые сферы, богатые железной рудой — так называемые марсианские сфероиды. Последние не представляют интереса для промышленности и могут стать ценностью только для коллекционеров. Вода, азот и аргон могут быть использованы только для нужд будущих колонизаторов.
Гематитовые сферы
Часть элементов появилась на Марсе в результате астероидной бомбардировки. Другая сформировалась благодаря тому, что Красная планета и Земля образовались из одного облака газа и пыли. Однако концентрация веществ в марсианской почве, с высокой долей вероятности, невелика или сильно варьируется в зависимости от региона. Наряду с высокой стоимостью добычи и доставки ресурсов на Землю это делает Марс малопривлекательным местом для добычи полезных ископаемых для земной промышленности, — чего нельзя сказать о возможных будущих колонистах.
Венера
Венера и Земля — фактически близнецы по размеру, массе, составу и условиям, в которых они сформировались. Как и Земля, Венера имеет большое железное ядро и скалистую силикатную мантию, а ее кора, по аналогии с нашей планетой, базальтовая.
Судя по данным советских исследовательских аппаратов Venera 13, 14 и Vega 2, концентрация кремния, алюминия, магния, железа, кальция, калия, титана, марганца и серы в базальтах Венеры зависит от локации, однако в целом соответствует их концентрации на Земле.
Наблюдения также показали, что залежи этих минералов, вероятно, покрыты слоем полупроводников неизвестного происхождения — возможно, речь идет о железосодержащих минералах, таких как пирит или магнетит. Кроме того, на Венере присутствуют свинец и висмут, которым планета обязана своим ярким свечением на ночном небе.
Венера и Земля очень похожи по структуре и условиям возникновения
Однако добыть эти минералы вряд ли удастся — давление на Венере в 92 раза выше, чем на нашей планете. Средняя температура составляет 460 °С — больше, чем на Меркурии, расположенном в два раза ближе к Солнцу. Такого жара хватит, чтобы расплавить свинец. Причина в особенном устройстве атмосферы планеты: вместо того, чтобы нагревать поверхность до тропического климата, как на Земле, облака отражают тепло и выжигают Венеру.
Ситуация усугубляется еще и тем, что на Венере отсутствует кислород — 96% атмосферы состоит из углекислого газа, а несколько раз в день на поверхности выпадают дожди из серной кислоты. Вряд ли хотя бы один известный науке организм проживет в таких условиях больше нескольких секунд, а техника — больше нескольких часов.
Пояс астероидов
Пояс астероидов — главный кандидат на добычу полезных ископаемых на космических телах и самый далекий от Земли среди перечисленных выше космических тел: расстояние от нашей планеты до ближайшей точки в поясе астероидов составляет 1,2 а.е. (180 млн км).
Астероиды в поясе делятся на два типа: водные и каменно-металлические. Первые содержат большое количество воды. Они, в общем-то, бесполезны для землян, но могут быть чрезвычайно ценным ресурсом для будущих космических колонистов: одного «водного» астероида может хватить на долгие-долгие годы снабжения космической колонии. Такой тип астероидов является наиболее распространенным, «водных» астероидов около 75% в нашей Солнечной системе.
Пояс астероидов может стать центром добычи полезных ископаемых в Солнечной системе, но только в далеком будущем — расстояние до ближайшей точки пояса от Земли составляет 180 млн км
В каменно-металлических астероидах много железа, никеля и кобальта. Кроме того, есть и золото, платина, родий, редкоземельные металлы и прочее. Само собой, ученых и представителей бизнеса больше всего интересуют металлические астероиды с максимальным содержанием металлов.
На большинстве астероидов обоих видов содержатся никель, железо, кобальт, на некоторых — платина, золото и аммиак. Проблема заключается в том, чтобы извлечь эти ресурсы и доставить их на Землю.
Экономическая выгода
Одно из самых больших препятствий в дополнение к еще не разработанному оборудованию для добычи ископаемых на астероидах и других описанных телах — транспортировка добытых ресурсов на Землю. Речь идет о миллионах и миллиардах метрических тонн ископаемых — в ином случае их просто нет смысла добывать. Современные ракеты и космические корабли с этой задачей справиться не смогут.
Кроме того, такие полеты будут очень дорогими — для сравнения, вся программа «Апполон», которая обошлась США в $25 млрд, позволила доставить на Землю лишь 383,7 кг лунного грунта. При этом перед астронавтами не стояла задача по добыче или переработке минералов.
Сейчас НАСА работает над миссией по отправке зонда на астероид Психея. Цель миссии — получить крошечный образец весом около 60 г. Оценочная стоимость миссии — около $1 млрд.
Но затраты могут окупиться — если оценки ученых верны, самый экономически выгодный астероид 253 Mathilde диаметром 2,8 км может принести до $9,53 трлн прибыли. Оценочная стоимость космического тела составляет более $100 трлн.
Наиболее экономически активным считается астероид 2000 BM19, очень маленький объект O-типа (шириной менее 1 км). Он находится достаточно близко к Земле, а его оценочная стоимость составляет $18,50 трлн. Прибыль оценивается в $3,55 трлн. Подробнее с оценкой экономической эффективности разработки астероидов можно ознакомиться здесь.
Юридические вопросы
Юридические ограничения в вопросах, связанных с разработкой астероидов, — это едва ли не самые сложные для будущей космической добывающей индустрии. Могут ли полезные ископаемые на космических телах принадлежать компаниям или частным инвесторам, правительствам или они являются собственностью всего человечества, как следует из Договора о космосе?
Договор о космосе, или Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну — межправительственный документ, подписанный в 1967 году. Основные положения договора сводятся к запрету размещения ядерного оружия или любого другого оружия массового уничтожения на орбите Земли, Луны или другого космического тела. Документ ограничивает использование Луны и других небесных тел только мирными целями и запрещает предъявлять претензию на владение космическим телом или его частью.
Некоторые страны — например, США и Люксембург — уже приняли законы, которые позволяют частным компаниям получить право на добычу ресурсов в космосе. Однако такие решения пока не согласуются с международным правом и не обсуждались с правительствами других государств.
Пока Договор о космосе, ратифицированный почти 100 странами, предполагает, что ни одна нация не может заявлять свои права на астероиды, планеты или любые другие космические объекты.
Источник
Разговоры о добыче полезных ископаемых на небесных телах кажутся либо абсолютной фантастикой, либо делом далекого будущего. Однако уже сегодня есть люди, которые готовы перевести эти разговоры в практическую плоскость и мало-помалу превращать фантастику в бизнес-стратегию.
В нынешнем апреле группа инвесторов совместно с несколькими ветеранами аэрокосмической области учредила новую компанию, Planetary Resources, чья задача состоит в разработке полезных ископаемых, содержащихся в астероидах. «Ставка на прорыв в научно-технической сфере подразумевает исключительный коммерческий риск», — говорит сопредседатель в правлении этого стартапа Питер Диамандис. Компания поддерживается такими первопроходцами в технической сфере, как гендиректор компании Google Ларри Пейдж, кинорежиссер и изобретатель Джеймс Кэмерон, гуру программирования из компании Microsoft Чарльз Симоний. Конечно, все эти люди не рассчитывают на быстрый возврат инвестиций. «Полеты к астероидам начнутся уже через несколько лет, — говорит другой сопредседатель Эрик Андерсон, — но мы планируем нашу деятельность в расчете на столетнюю перспективу развития этой отрасли».
Шаг 1. Анализируем перспективы
Прежде чем начать добычу полезных ископаемых в космосе, компании Planetary Resources нужно подобрать астероид, который пообещал бы при разработке хорошую экономическую отдачу. Однако астероиды — это не звезды, а небольшие темные небесные тела, которые очень трудно разглядеть через толщу земной атмосферы. Лучше всего было бы охотиться на них с помощью телескопа, подвешенного в космическом пространстве. Вот почему в штаб-квартире компании Planetary Resources, расположенной в Бельвю, штат Вашингтон, президент компании, а по совместительству и ее главный инженер Крис Левицки уже приступил к сборке телескопа серии Arkyd 100. Это будет первый космический телескоп во владении частной компании.
Что можно искать в космосе?
Воду. Хондритовый астероид (С-типа) диаметром всего 7 м может содержать в себе 100 тонн воды. Она может потребоваться для синтеза ракетного топлива или для жизнеобеспечения астронавтов.
Металлы. Металлический астероид размером 24 м может содержать 33000 тонн пригодного к использованию металла. Одной только платины в нем содержится количество, эквивалентное 50 миллионам долларов. Вот только смогут ли космические згорнодобытчики воспользоваться этими богатствами?
Космический аппарат весом всего 20 кг будет поменьше и попроще, чем любой из космических телескопов, построенных на государственные средства. Hubble, например, обошедшийся казне в полтора миллиарда долларов, имеет первичное зеркало диаметром 235 см, а зеркало телескопа Arkyd составит в диаметре всего-то 22,5 см. Hubble обладает широким полем зрения и набором инструментов, позволяющих сканировать глубины космического пространства. Arkyd нацелен на гораздо более простую задачу — поиск объектов пределах Солнечной системы. Малые размеры — большая экономия. Стоимость вывода таких аппаратов на орбиту можно радикально снизить, запуская их в качестве дополнительного груза вместе с крупными спутниками на чужих ракетах-носителях.
Planetary Resources собирается построить целый флот таких малоразмерных космических телескопов, снизив стоимость каждого как минимум до $10 млн. Такая стратегия позволяет и подстраховаться на случай отказа одного из аппаратов. «Необходимо поставить эту работу на конвейер, — говорит Левицки (ранее он в Лаборатории реактивного движения занимался темой полетов на Марс). — Неправильно было бы вложить все средства в один драгоценный аппарат, чтобы потом носиться с ним как с писаной торбой».
На этом этапе компания уже совершит первую попытку окупить свои капиталовложения, сдавая в аренду аппараты Arkyd 100. Телескопы космического базирования могут заинтересовать и астрономов, и тех ученых, которым было бы интересно исследовать земную поверхность с разрешением около 2 м на пиксель. Первый свой аппарат Planetary Resources планирует запустить уже к концу 2013 года, а какова будет стоимость аренды, руководство компании пока не решило.
При разработке космических полезных ископаемых вода будет цениться намного дороже золота. Ее ценность становится наглядной, если вспомнить, из каких элементов она состоит. Водород — то самое, что нужно для перезарядки топливных элементов, при повторном соединении водорода с кислородом мы получим весьма энергоемкое топливо. Воду намного дешевле будет находить в космосе, чем доставлять с Земли. Ведь запуск в космос каждого килограмма обойдется в десятки тысяч долларов. Компания Planetary Resources может извлекать прибыль, продавая добытую в космосе воду каким-либо государственным космическим агентствам или частным космоперевозчикам. Цена такой воды может быть ниже, чем стоимость ее доставки с Земли, и при этом такая торговля может оказаться весьма прибыльной.
Лучшими источниками H2O могут считаться астероиды из углеродистого хондрита. Как говорит Джон Льюис, заслуженный профессор Университета Аризоны и автор книги «Полезные ископаемые в небесах», упомянутые выше астероиды (их еще называют астероидами С-класса) имеют рыхлую, хрупкую структуру. «Кубик такого минерала можно раздавить, просто сжав между большим и указательным пальцами». На таком астероиде бурение не потребуется — чтобы извлечь воду, достаточно будет просто скоблить его поверхность.
Сотрудник NASA стоит перед шестью сегментами главного зеркала из космического телескопа Джеймса Уэбба. Пионеры внеземной геологоразведки станут первыми частными владельцами космических телескопов. Возможно, они даже будут сдавать их в аренду.
Шаг 2. Найти и «застолбить» участок
Космические телескопы засекли какой-то перспективный в плане разработки космический объект. Теперь у нас есть только один способ выяснить, чего стоят содержащиеся в нем ресурсы — подобраться к нему поближе.
Дальнейший сценарий в компании Planetary Resources представляют себе так. Целая стая роботов-разведчиков направляется в сторону обнаруженного астероида (он относится к классу «околоземных астероидов» или NEA) и облетает его со всех сторон. «Наши межпланетные зонды будут стоить во много раз меньше, чем нынешние модели, а для этого необходимо радикально изменить подход к задаче», — говорит Диамандис. Новый вид реактивного движителя, который при этом имеется в виду, агентство NASA уже дважды использовало в исследованиях глубокого космоса. Речь идет ионном двигателе, в котором поток ионизированного газа (ксенона), разгоняются в электростатическом поле. В результате формируется тяга, которая неспешно, в течение нескольких лет способна разогнать космический аппарат до приличных скоростей. Процесс довольно медленный, но к финишу скорость может превышать 300 000 км/час.
Интересующие нас астероиды будут, скорее всего, иметь в диаметре километр-полтора. Небесные тела таких размеров слишком малы, чтобы породить заметную силу притяжения. Посадка космического аппарата на такой «камень» просто невозможна. Здесь, скорее, следует говорить о «стыковке». Зонд медленно приблизится к поверхности астероида, мягко коснется цели, после чего нужно будет задействовать что-то вроде якоря. Если для этой цели использовать кошки или крючья, есть вероятность, что якорная лапа выворотит из поверхности кусок породы, а сам аппарат, ударившись, отлетит от астероида. Разумнее было бы использовать какие-то буровые устройства, которые могли бы ввинчиваться в посадочную площадку, надежно удерживая аппарат на поверхности планеты.
После этого робот может провести химический анализ породы, определить, есть ли там вода и какие-либо металлы. Результаты анализа будут переданы на Землю. Идеальным для такого экспресс-анализа можно было бы считать спектроскоп на базе лазерно-индуцированного пробоя среды (LIBS). При этой методике под воздействием лазерного луча поверхность образца испаряется, после чего соответствующие датчики могут анализировать свет, излученный плазмой, возникшей в результате испарения, и фиксировать наличие в образце тех или иных элементов. Первые аппараты, построенные на принципе LIBS, ChemCam, будут задействованы при исследовании чужих миров, когда ровер Curiosity достигнет Марса на борту отправленного NASA космического аппарата.
Астероид пойман и готов к доставке. Для дальнейшего обследования и переработки астероиды можно подтащить поближе к Земле. В своем апрельском отчете Институт космических исследований Кека, действующий при Калифорнийском технологическом институте, расписал, как можно было бы перевести один из астероидов на лунную орбиту. Такое космическое тело могло бы стать для астронавтов весьма привлекательной тренировочной площадкой. «Выполнение этой программы будет очередным шагом на пути в солнечную систему», — говорит один из руководителей проекта Луис Фридман. На иллюстрации: 1.Обмеры. Комплекс лазеров и радаров выдает информацию о размерах астероида. После этого космический аппарат развертывает свой высокопрочный сачок до нужного размера. Конструкция из надувных лап, соединенных между собой тросами, должна плотно охватить пойманный астероид.
2.Отлов жертвы. Итак, астероид пойман в сачок. Датчики, закрепленные на конструкции снаружи, позволяют убедиться, что астероид не греется и не теряет свой водный запас.
3.Доставка домой. Аппарат отправляется в долгий обратный путь к лунной орбите. Эта дорога может занять шесть лет, и только по прибытии будет начата разработка астероида.
Зонд-разведчик может также пометить выбранный астероид, закрепив на его поверхности радиомаячок. Как утверждают в руководстве компании, такой маячок нужен не только для того, чтобы облегчить в дальнейшем поиск выбранного астероида. «Установка радиомаяка может служить неким юридическим жестом, подтверждающим право владения», — говорит Диамандис.
Вопрос о претензиях частной компании на какой-либо астероид пока слабо отражен в международном законодательстве. В 1967 году был заключен Договор по космосу, а сейчас его ратифицировало более сотни государств. Уже в будущем десятилетии перед юристами встанет задача как-то зафиксировать в этом договоре права предпринимателей из частного сектора. Но, скорее всего, подтвердится известное изречение о том, что владение — 9/10 права, и простой радиопередатчик, укрепленный на астероиде, вполне сможет гарантировать права собственности той компании, что установила маячок.
Робот-прототип, разработанный в Лаборатории реактивного движения NASA, вместо опор имеет 750 стальных крючков. Они цепляются к шершавым поверхностям, не позволяя роботу в условиях слабого притяжения отцепиться от поверхности астероида и улететь в космическое пространство.
Итак, представим себе, как рой горнодобывающих роботов, цепляясь за поверхность астероида своими когтистыми лапками, с хрустом грызет насыщенный водой слой грунта, используя для этого нечто вроде хоботков. Тем временем другие аппараты пылесосят поверхность планеты, следуя по стопам добытчиков и утрамбовывая остатки их деятельности. После этого умелые машины будут упаковывать грунт, то есть реголит, в специальные герметичные контейнеры. Эти роботы будут ползать, ходить или летать, регулярно навещая «горнообогатительную фабрику», «висящую» над поверхностью астероида или просто пришвартованную к нему намертво. Там реголит разогреют, выпарят из него воду и соберут ее в баки хранилища.
Инфраструктура добычи полезных ископаемых в космосе. С 2009 по 2011 год агентство NASA с помощью своего космического телескопа WISE (Wide-field Infrared Survey Explorer) создавало сводный каталог астероидов, имеющихся в Солнечной системе.
В поясе между Марсом и Юпитером было обнаружено 100 000 ранее неизвестных астероидов. 19500 астероидов среднего размера обнаружилось неподалеку от Земли.
Зафиксировано 4700 крупных астероидов, попадающих в пределы относительной космической близости к Земле (критерием считался радиус 8 миллионов километров, и такие астероиды объявлялись потенциально опасными). В NASA считают, что в данный каталог попало только 30% из числа таких потенциально опасных астероидов.
Более сложные задачи встанут перед космическими горнодобытчиками, если они решатся на добычу металлов. Астероиды М-типа, представляющие собой просто здоровенные глыбы металла, окажутся крепким орешком для космического горнорудного предприятия. Таково мнение Гарри Максуина, геолога из Университета штата Теннесси и председателя группы исследования поверхности астероида в экспедиции Dawn, которую NASA организовало для исследования астероидов. Сама попытка закрепиться на поверхности такого небесного тела уже будет представлять собой достаточно сложную задачу. О бурении металлического массива можно забыть — как и о попытке отпилить от него кусок, чтобы забрать его на переработку. «Только подумайте, сколько на это уйдет энергии, и вы поймете, что задача не слишком-то реалистична», — говорит Максуин.
Технологии космических горнодобытчиков
Магнитные грабли. В некоторых случаях для добычи драгоценных металлов не потребуется рыть никаких шахт. Достаточно будет граблей или гребешка с магнитами на каждом зубце. Стоит пройтись такой бороной по поверхности реголита, и в условиях малой гравитации зерна драгметаллов сами прилипнут к зубьям.
Сито, действующее при слабых гравитационных силах. Вот вам повод для реверансов перед золотоискателями старой закалки. В 2009 году ученые попробовали использовать вибростол для просеивания грунта через решето, чтобы отделить частицы того размера, который является оптимальным для дальнейшей переработки. Эта система продемонстрировала работоспособность при нулевой гравитации, которую создавали полетом самолета по параболической траектории.
Якоря для швартовки к астероиду. В условиях практически нулевой гравитации приземлиться на астероид — непростая задача. Ничуть не проще в такой обстановке вести добычу ископаемых. В лаборатории реактивного движения при NASA разрабатываются сейчас механизмы для забивки в грунт астероида клиньев, ориентированных под разными углами — так они должны держаться существенно надежнее. С другой стороны, компания Honeybee Robotics занимается сейчас разработкой ввинчивающихся буров, которые должны еще надежнее крепить космические аппараты к поверхности астероида.
Правда, по расчетам Льюиса, некоторые из астероидов могут состоять из металла всего на 30%, где металлы представляют собой железо-никель-кобальтовый сплав или сплав платиновой группы. Как он говорит, «велик соблазн просто взять магнит и с его помощью извлечь крупинки металла из раздробленного реголита».
Доставка продукции
С продавцом все ясно, но кто будет покупателем? Кому потребуется товар, который космические горняки добыли с таким трудом?
Металлы платиновой группы — вот надежда на быстрое обогащение. Это один из редких видов продукции, добытой в космосе, которую рентабельно доставлять на Землю. «Эти металлы широко используются сейчас во многих распространенных современных технологических процессах», — говорит Левицки. Металлы платиновой группы просто незаменимы в автомобильных катализаторах, в производстве силикона и стекла. Они присутствуют в компьютерных жестких дисках, в автомобильных свечах, где, подавляя коррозию, они продлевают жизнь свечи до пробега в 160000 км. В медицине эти металлы незаменимы благодаря их совместимости с биологическими тканями.
Допустим, у нас есть 500-тонный астероид, в котором содержится 0,0015 процента металлов платиновой группы. Это ведь не так плохо и втрое превышает концентрацию в самых богатых месторождениях платины, известных сейчас на Земле. Как говорит Левицки, «если радикально увеличить количество доступной на Земле платины, мы станем свидетелями зарождения новых отраслей производства, которые нам трудно сейчас даже представить».
Однако большая часть веществ, добытых на астероидах, найдет своего покупателя только в весьма отдаленном будущем, когда дальние космические путешествия станут обычным занятием для обитателей Земли. Вот тогда станут необходимы внеземные перевалочные базы, где астронавты, направляясь в дальние края, смогут пополнить запасы воды и топлива. А сейчас — раз нет таких покупателей, значит, не нужны и такие предложения на рынке космических услуг.
Под таким же углом можно рассматривать и проекты, связанные с добычей обычных конструкционных металлов. Они обретут реальность только тогда, когда космические корабли и станции станут производить не на Земле, а на орбите. Разумеется, производство каких-то конструкций в условиях открытого космоса выглядит весьма привлекательно, если сознавать, что мы таким образом экономим на доставке с Земли готовых блоков, однако это направление, если понимать его как вид коммерческой деятельности, всегда будет под угрозой со стороны космических перевозчиков, которые стремятся придумать новые, более дешевые способы вывода земных товаров на орбиту.
Если наступит эпоха, когда обитатели орбитальных станций будут питаться со своих огородов, среди товаров, предлагаемых на космическом рынке появятся не только железо и сталь. Возникнет спрос на азот и аммиак, которые необходимы в космическом земледелии как удобрения. Если человечество начнет всерьез обживаться в космосе, такие отрасли производства и сегменты рынка станут вполне актуальны. Как выразился Льюис, «мы говорим о тех отраслях промышленности, которые помогут обрезать пуповину, связывающую нас с родной планетой».
Проекты компании Planetary Resources — это не просто бизнес-план. Это написанная в самых радужных красках картина, призывающая нас поддерживать дальнейшие космические исследования. Это слово в защиту самых дерзких мечтаний, которые человечество когда-нибудь сделает реальностью.
Вполне возможно, некоторые металлические астероиды имело бы смысл целиком подтянуть поближе к Земле — хотя бы до лунной орбиты. «В них может содержаться такое количество металла, что стоит задуматься, как бы прихватить всю такую штуковину целиком», — говорит Льюис.
Статья «Космический клондайк» опубликована в журнале «Популярная механика»
(№9, Сентябрь 2012).
Источник