Примеры полезного сила трения всех видов

Примеры полезного сила трения всех видов thumbnail

Анонимный вопрос  ·  2 ноября 2018

3,4 K

Если бы не было трения люди не могли бы ходить,ездить .
Человек был бы не в состоянии держать что то в руках.
Исчезновение трения означало бы изменение структуры материи.
Материя – это всё то,что существует во вселенной ,независимо от нашего сознания.
Без трения наш мир невозможен!

Мне интересны множество тем: от психологии до космоса…)

Благодаря силе трения мы можем ходить и ездить (за счет сцепления с поверхностью и наличию силы трения мы не проскальзываем), можем делать ткани тоже благодаря наличию силы трения, которая позволяет ниткам удерживаться в ткани, все механизмы не смогут функционировать без силы трения.

Пожалуй, все наше существование обязано силе трения, почти все процессы протекают в макромире протекают с ее присутствием. Полезна может быть… Да везде! Даже при ходьбе. На льду эта сила куда меньше, но долго ли можно оставаться здоровым в таких условиях? 🙂

Как учёные обнаружили, что скорость света — предел?

Все слышали про общую теорию относительности, и все примерно представляют себе ее тезисы. Вспомним один из них.

Время относительно. Это буквально означает, что если двигаться мимо совершенно точных и исправных часов (с любой скоростью), они покажутся вам идущими медленно. Одна секунда на них будет длиться для вас дольше секунды — тем дольше, чем быстрее вы двигаетесь. Но та же одна секунда этих часов будет длиться ровно одну секунду для того, кто в этот момент просто стоит возле них.

То же происходит с пространством. Если вы двигаетесь навстречу шару и каким-нибудь образом успеете на ходу измерить его диаметр, выставив линейку по направлению движения, окажется, что шар для вас стал сплюснутым. Да, верно: тем более сплюснутым, чем быстрее вы двигаетесь.

И вот мы двигаемся все быстрее. Еще быстрее, еще быстрее. Шары на нашем пути сплющиваются, часы на нашем пути замедляются. Они делают это с экспоненциальной скоростью: сначала чтобы заметить разницу нужно разогнаться очень сильно, чуть позже уже малейший прирост в скорости будет давать заметный невооруженным взглядом эффект сжатия. И так до тех пор, пока… пока все шары вокруг вас не станут дисками нулевой толщины с нулевым расстоянием между ними. Пока все часы не остановятся. Расстояние до любого объекта впереди или позади будет равно нулю, секунда на чужих часах будет длиться бесконечно. С вашей точки зрения вы будете находиться во всех точках своей траектории одновременно, а понятие времени или изменения просто исчезнет. Прошлое и будущее, равно как направления «вперед» и «назад» перестанут иметь для вас смысл.

Конечно, сделать этого вы не сможете, потому что у вас есть масса: вы сможете бесконечно приближаться к этой границе, но никогда не достигнете ее. Это асимптота на графиках восприятия пространства и времени. Но у света массы нет, и для него те же графики совпадают с асимптотами.

Строго говоря, называть эту скорость «скоростью света» не совсем точно. Это предел кривизны пространства и времени. Что угодно, не имеющее массы, окажется именно в этом пределе. Свету повезло быть именно такой сущностью, но с тем же успехом мы могли бы назвать эту величину «скоростью немассивных тел».

Свет движется с этой скоростью, потому что у него нет массы, а не сама скорость стала максимальной благодаря свету. Забудьте про свет. Представьте себе, каково быть объектом без массы, для которого перестало существовать время и пространство. Скорость — это расстояние, проходимое в единицу времени. Как можно развить скорость еще выше, когда расстояния и времени для вас уже не существует?

Прочитать ещё 11 ответов

Что произошло бы, если бы исчезла сила трения?

Ученые говорят, что человек тратит 10-12 % усилий на борьбу с силой трения и избавление от последствий ее действия. Казалось бы, уберем силу трения и резко снизятся потери энергии. Но в действительности далеко не все так просто. Давайте представим, что произойдет, если гипотетически на Земле исчезнет сила трения.

Выходите вы такой ранним утром из своего обычного дома на улицу, где уже нет трения, и что видите? Первым делом вы хорошо приложитесь пятой точкой или затылком, как повезет, о землю, потому что силы трения между ботинками и вашим крыльцом уже нет. А что вы думали? Идеальный гололед.

Упав, вы начнете скользить по поверхности в направлении наклона улицы. Вместе с вами по улице будут катиться ваши соседи, дворовые собаки, мусорные контейнеры и автомобили. Все, что не вкопано глубоко и прочно в землю.

Попав в «карман» из каких-нибудь надежно закрепленных конструкций, откуда некуда катиться, вся ваша дружная компания остановится. Но представьте, какая куча-мала будет в этом месте? Более того — это будет трагедия, ведь против летящего автомобиля или любого другого большого предмета у вас мало шансов. А встать и убежать вы просто не в состоянии. Возможно, нас выручили бы присоски, но не факт.

Что говорят физики по этому поводу:

  1. Любые средства передвижения, будь то велосипед, автобус или электричка, не смогут остановиться, а стоящий на месте транспорт не сможет двинуться с места.

  2. Ваш ребенок не сможет научиться играть на скрипке, контрабасе, виолончели или альте, просто потому, что смычок не сможет больше извлечь звук из этих музыкальных инструментов. Это самое безобидное последствие отсутствия силы трения.

  3. Шнурки вы тоже больше не сможете завязать, потому что всевозможные узлы мгновенно развяжутся.

  4. Мы перестанем вешать картины и полки на стены, потому что гвозди и саморезы просто будут выскальзывать из них. Сами по себе будут раскручиваться гайки. Шурупы и болты, закрученные вверх, выкрутятся под собственным весом или весом прикрепленных к ним конструкций. Представляете, сколько всего свалится на землю с высоты?

  5. В горах начнутся камнепады и массовые сходы лавин. Вследствие вращения планеты пока непонятно, как будут вести себя океаны и моря. Возможно они просто равномерно тонким слоем размажутся по поверхности всей планеты?

Читайте также:  Что полезно в холодце для костей

Как видите, без силы трения в мире воцарит хаос. Мы забудем о тишине, потому что звуки станут бесконечно отражаться от оставшихся препятствий. Будут дуть постоянные ветра. Вещи будут выскальзывать из рук. Да и не только из рук. Всё будет падать, скользить и катиться, пока предметы не окажутся на одном уровне.

В конце концов, если исчезнет трение, наша планета превратится в идеально ровный, гладкий шар примерно такой же формы, которую принимают жидкости в условиях невесомости.

Хорошо бы избавиться от силы трения, но только частично, в нужных местах.

Каково физическое объяснение скрипа, когда чем-то трешь о гладкую поверхность?

Старший научный сотрудник ИНЭОС РАН, химик, музыкант и радиолюбитель

Это пример автоколебаний. Похожая штука происходит при движении скрипичного смычка по струне. Сила трения препятствует движению, фрагмент стекла смещается вместе с пальцем, но потом палец (или чем вы там трете по стеклу) срывается, потому что сила трения уже не может его удержать, и палец останавливается уже в новой точке. Периодичность этих действий зависит от свойств стекла как колебательной системы, силы прижатия, скорости движения. В первом приближении можно считать, что форма звуковой волны, получаемой при подобных колебаниях близка к пиле:

Сила трения когда и где действует?

Операционный директор компании Lawwin digital studio, разработка сайтов…

Сила трения действует всегда при взаимодействии двух поверхностей, даже предмет двигающийся сквозь воздух в том числе испытывает силу трения о воздух (т.к. дада воздух это не вакуум).

Прочитать ещё 2 ответа

Если существует электромагнитная сила, то зачем нужна отдельно сила трения, сила упругости, если это одна и та же сила?

Напоминает афоризм какого-то иранского аятоллы: «Если в книге написано то же, что в Коране, то она бесполезна. Если в книге написано не то, что в Коране, то она вредна».

Не всегда удобно и не всегда возможно раскладывать явление на фундаментальные причины. В технике это слишком утомительно. Да и вычислительные проблемы часто непреодолимы. Например, принципиально возможно рассчитать всю аэродинамику самолёта, но практически продувают модель самолёта в аэродинамической трубе.

А ещё. Силы трения и упругости — это силы взаимодействия атомов и молекул. Они на 95% электромагнитные. Но есть ещё 5% других сил, например сил взаимодействия путём электронного обмена.

Источник

Определение силы трения

  • Виды силы трения
  • Как найти силу трения?
  • Формула силы трения
  • Рекомендованная литература и полезные ссылки
  • Сила трения, видео
  • Сила трения возникает из соприкосновения поверхностей двух физических тел, пребывающих в движении по отношению друг к другу. Теория трения издревле волновала умы человечества, древние инженеры: строители Египетских пирамид, Стоунхенджа в Англии или таинственных каменных истуканов на острове Пасхе, все они (как впрочем, и их современные коллеги) решали насущную проблему, связанную с трением и тем как его максимально уменьшить. Ведь именно сила трения делает трудным перемещение тяжелых грузов по земле (тех же камней для пирамид или Стоунхенджа), и чтобы облегчить эту задачу, нашими далекими предками было придумано такое полезное изобретение как колесо и сделано множество других важных открытий. В нашей статье мы посмотрим на силу трения в физическом аспекте, разберем, как действует она на те или иные тела, какие есть ее виды и формулы расчета.

    Определение силы трения

    Что такое сила трения? Классическое определение звучит так: сила трения – это сила, появляющаяся при соприкосновении двух тел во время движения и препятствующая этому самому движению. Иными словами, чем больше сила трения между телами, тем труднее их двигать относительно друг друга. Что же касается самой физической природы трения, то оно появляется как результат взаимодействия между атомами и молекулами тел, соприкасающихся между собой.

    Также стоит заметить, что при трении двух тел на них действует третий закон Ньютона: сила трения, действующая на первое тело (тело А), равна силе трения, действующей на второе тело (тело Б), только по модулю эти силы имеют противоположное направление.

    трение

    На этой картинке, сила трения, действующая на холодильник, равна силе трения, действующей на пол, но направлены эти силы в противоположные стороны.

    Виды силы трения

    В зависимости от характера движения тел различают такие виды сил трения как:

    • Покоя. Сила трения покоя возникает при соприкосновении двух тел, которые, однако, не движутся относительно друг друга, и имеет нулевое значение.
    • Скольжения. Сила трения скольжения – наиболее классическая иллюстрация действия трения, возникает при скольжении тел относительно друг друга. На ее величину влияет масса тела (чем она больше, тем больше сила трения), характер поверхности (разумеется, при скольжении по льду сила трения будет в разы меньше чем при скольжении по земле).
    • Качения. Сила трения качения появляется, когда одно тело катится по поверхности другого, например, при езде на велосипеде или автомобиле. При качении сила трения гораздо меньше, чем при скольжении. Это опытным, эмпирическим путем установили еще те далекие наши предки, которые изобрели колесо – величайшее изобретение в истории науки и техники.
    • Верчения. Сила трения верчения проявляется при вращении одного тела по поверхности другого.

    Виды силы трения

    Что же касается самого трения то и оно бывает нескольких видов:

    • Сухое – проявляется при соприкосновении твердых поверхностей.
    • Вязкое, также подобное трение называют жидкостным, появляется при соприкосновении твердого тела c жидкостью либо газом. Например, на корабль, плывущий по воде, как и на поверхность воды, действует вязкое (жидкостное) трение. Сила вязкого трения обычно гораздо меньше силы сухого трения.
    • Смешанное, возникает, когда между поверхностями, которые соприкасаются, есть слой смазки.
    Читайте также:  Фисташки в чем полезен в организма человека

    Интересный факт: при осаде Константинополя в 1453 году турки, чтобы обойти специальную цепь, преграждающую путь турецким кораблям в залив Золотой Рог перетянули их по суше. А для того, чтобы уменьшить силу трения при перемещении больших тяжелых военных кораблей сделали настил из деревянных рельсов, который обильно смазали салом. Таким образом, благодаря смазке и смешанному трению, сила которого гораздо меньше, чем при трении сухом, турки удачно воплотили свой замысел, приведя защитников Константинополя в подлинное смятение.

    Султан Мехмед II наблюдает за перевозкой своих судов

    Султан Мехмед II наблюдает за перевозкой своих судов.

    Как видите, знание законов физики и механики не раз и не два находило свое практическое воплощение в реальной жизни.

    Но вернемся от истории снова к физике, трение также разделяют на внешнее и внутреннее. Внешнее трение характерно для взаимодействия исключительно твердых тел. Внутреннее трение характеризуется вязкостью и возникает при взаимодействии жидкостей или газов, а такое взаимодействие может происходить внутри условно одного тела. Например, в водах мирового океана есть разные течения, с более холодной или более теплой водой, при взаимодействии этих течений между ними и возникает внутреннее трение.

    Как найти силу трения?

    Чтобы рассчитать силу трения необходимо знать коэффициент трения k, который зависит от характера поверхности. Коэффициент трения – постоянная величина и его значение можно узнать из специальной таблицы.

    коэффициент трения

    Помимо коэффициента трения необходимо знать силу реакцию опоры N, которая, по сути, равна силе тяжести (гравитации) зависящей от массы тела (m) и ускорения свободного падения. Ее формула будет иметь следующий вид:

    N = m * g

    Где m – масса тела, а g – ускорение свободного падения, это постоянная величина равная 9,8 м/с2.

    Формула силы трения

    Сила трения высчитывается путем произведения реакции опоры N и коэффициента трения k. Формула силы трения будет иметь следующий вид:

    Fтр = k * N.

    В некоторых формулах коэффициент трения k обозначается символом µ.

    Написанные выше расчеты справедливы в самом простом случае, когда тело лежит на строго горизонтальной поверхности.

    сила трения на горизонтальной поверхности

    Если же движение происходит по наклонной плоскости, то расчеты силы трения несколько усложняются. На тело, как и раньше, действует сила гравитации и реакция опоры поверхности, но не в одном направлении.

    сила трения на наклонной поверхности

    Таким образом, формула силы трения для тела, которое движется по наклонной поверхности, будет иметь следующий вид:

    Fтр = k * m * g * cosα.

    Где k – коэффициент трения, m – масса тела, g гравитационная постоянная (помним, что она равна 9,8 м/с2), cosα – отношение катета, прилежащего к углу, к гипотенузе треугольника (косинус).

    формула трения

    При определении силы трения на наклонных поверхностях ярко проявляется связь между физикой и геометрией.

    Рекомендованная литература и полезные ссылки

    • Сила трения. ЗФТШ, МФТИ. Дата обращения 14 февраля 2019.
    • Енохович А. С. Справочник по физике. — Просвещение, 1978. — С. 85. — 416 с.
    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 1. Трение в машинах. Теория, расчет и конструкция подшипников и подпятников скольжения. Машгиз. М.-Л. — 1947. 256 с.
    • Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
      Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
    • Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
    • Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.

    Сила трения, видео

    И в завершении образовательное видео по теме нашей статьи.

    Примеры полезного сила трения всех видов

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Источник

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 января 2019;
    проверки требуют 15 правок.

    Тре́ние — процесс механического взаимодействия соприкасающихся тел при их относительном смещении в плоскости касания (внешнее трение) либо при относительном смещении параллельных слоёв жидкости, газа или деформируемого твёрдого тела (внутреннее трение, или вязкость). Далее в этой статье под трением понимается лишь внешнее трение. Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.

    Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз[ссылка 1].

    Сила трения[править | править код]

    Сила трения — это сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению. Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей. .

    Разновидности силы трения[править | править код]

    При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:

    • Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
    • Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
    • Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
    • Трение верчения — момент силы, возникающий между двумя контактирующими телами при вращении одного из них относительно другого и направленный против вращения. Определяется формулой: , где — нормальное давление, — коэффициент трения верчения, имеющий размерность длины[1].
    Читайте также:  Есть науки гуманитарные а есть полезные

    Характер фрикционного взаимодействия[править | править код]

    В физике взаимодействие трения принято разделять на:

    • сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твёрдыми смазочными материалами) — очень редко встречающийся на практике случай, характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
    • граничное, когда в области контакта могут содержаться слои и участки различной природы (оксидные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения;
    • смешанное, когда область контакта содержит участки сухого и жидкостного трения;
    • жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
    • эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале, возникает при увеличении относительных скоростей перемещения.

    Закон Амонтона — Кулона[править | править код]

    Основной характеристикой трения является коэффициент трения , определяющийся материалами, из которых изготовлены поверхности взаимодействующих тел.

    В простейших случаях сила трения и нормальная нагрузка (или сила нормальной реакции) связаны неравенством

    Пары материалов покоя скольжения
    Сталь-Сталь0,5—0,8[2]0,15—0,18
    Резина-Сухой асфальт0,95—10,5—0,8
    Резина-Влажный асфальт0,25—0,75
    Лёд-Лёд0,05—0,10,028
    Резина-Лёд0,30,15—0,25
    Стекло-Стекло0,90,7
    Нейлон-Нейлон0,15—0,25
    Полистирол-Полистирол0,5
    Плексиглас, оргстекло0,8

    Закон Амонтона — Кулона с учетом адгезии[править | править код]

    Для большинства пар материалов значение коэффициента трения не превышает 1 и находится в диапазоне 0,1 — 0,5. Если коэффициент трения превышает 1 , это означает, что между контактирующими телами имеется сила адгезии и формула расчета коэффициента трения меняется на

    .

    Прикладное значение[править | править код]

    Трение в механизмах и машинах[править | править код]

    В большинстве традиционных механизмов (ДВС, автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали. С миниатюризацией механизмов и созданием микроэлектромеханических систем (МЭМС) и наноэлектромеханических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной , и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области. Для решения проблемы трения создаются новые методы его снижения в рамках трибологии и науки о поверхности (англ.).

    Сцепление с поверхностью[править | править код]

    Наличие трения обеспечивает возможность перемещаться по поверхности. Так, при ходьбе именно за счёт трения происходит сцепление подошвы с полом, в результате чего происходит отталкивание от пола и движение вперёд. Точно так же обеспечивается сцепление колёс автомобиля (мотоцикла) с поверхностью дороги. В частности, для улучшения этого сцепления разрабатываются новые формы и специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья, сильнее прижимающие машину к трассе.

    Трение внутри материалов[править | править код]

    Журналы[править | править код]

    • Трение, Износ, Смазка, журнал о трении.
    • Трение и Износ, журнал о трении издаётся Национальной Академией Наук Беларуси с 1980 г.
    • Journal of Tribology, международный журнал о трении.
    • Wear, международный журнал о трении и износе.
    • Таблицы коэффициентов трения, численные значения коэффициентов трения.

    Литература[править | править код]

    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 1. Трение в машинах. Теория, расчет и конструкция подшипников и подпятников скольжения. Машгиз. М.-Л. — 1947. 256 с.
    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 2. Износ материалов. Классификация видов износа, методов и машин для лабораторного испытания материалов на износ машины и производственные на них исследования. Машгиз. М.-Л. — 1947. 220 с.
    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 3. Износ машин. Износ машин и деталей и способы борьбы с их износом. Машгиз. М.-Л. — 1947. 164 с.
    • Зайцев А. К. Основы учения о трении, износе и смазке машин. Часть 4. Смазка машин. Машгиз. М.-Л. — 1948. 279 с.
    • Archbutt L., Deeley R.M. Lubrication and Lubicants. London. — 1927
    • Арчбютт Л., Дилей Р. М. Трение, смазка и смазочные материалы. Руководство по теории и практике смазки и по методам испытания смазочных материалов. Госгоргеолнефтиздат. — Л. — 1934. — 703 с.
    • Арчбютт Л., Дилей Р. М. Трение, смазка и смазочные материалы — 2-е изд., перераб. и доп. — М.-Л.: Гостоптехиздат. — 1940. — 824 с.
    • Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.
    • Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение. М.: Изд. АН СССР, 1956.
    • Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы. ЛКИ, 2008.
    • Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
    • Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
    • Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation, Springer, 2009.
    • Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.

    Примечания[править | править код]

    1. Зиновьев В. А. Краткий технический справочник. Том 1. — М.: Государственное издательство технико-теоретической литературы, 1949. — С. 296
    2. ↑ Friction theory and coefficients of friction for some common materials and materials combinations.

    Источник