Процесс флотации в обогащении полезных ископаемых

Процесс флотации в обогащении полезных ископаемых thumbnail

Флотация представляет собой метод обогащения полезных ископаемых на промышленных предприятиях. Этот способ основан на способности одних частиц – гидрофильных — легко смачиваться жидкостью и отделяться от других частиц – гидрофобных. Процесс происходит в жидкой среде, которая аэрируется воздухом или в которую вводятся капельки масла.

Разделение руды на элементы происходит на границе двух разных средств. Во флотационной установке гидрофобные частички прилипают к пузырькам газа или масла и поднимаются на поверхность, в то время как гидрофильные элементы оседают на дне емкости. Этот процесс имеет высокую эффективность и экономичность.

Полная автоматизация позволяет уменьшить себестоимость технологических операций на обогатительной фабрике и в гидрометаллургии.

Более подробно о том, что это такое – флотация, а также в каких сферах она используется, читайте далее.

Методы флотации

В зависимости от того, каким образом создается межфазная граница между средами, используются четыре разных способа флотации:

  • Масляная. Используется для добычи сульфидных минералов, которые смачиваются в руде маслом и всплывают на поверхность воды, в то время как порода оседает вниз.
  • Пленочная. Принцип работы этого оборудования основан на способности мелких гидрофобных частиц удерживаться на поверхности воды.
  • Пенная. В установках через смесь руды в воде пропускаются маленькие пузырьки воздуха, которые всплывают на поверхность и собираются с нее. Помимо воды, в качестве флотационной жидкости могут использоваться другие вещества.
  • Электрофлотация. Всплытие на поверхность жидкости частиц осуществляется за счет выделения электролитических газов в жидкости.

Где применяется флотация

Благодаря универсальности и эффективности метода технология флотации используется при добыче таких полезных ископаемых6

  • Серы;
  • Золота (обработка золотосодержащих руд);
  • Угля (обогащение угольных шламов);
  • Железных руд;
  • Меди (обогащение медной руды).

Способы использования флотационных устройств

Рассматриваемая обогатительная технология в зависимости от типа используемого устройства позволяет решить несколько различны задач:

  1. Получение концентрата полезного ископаемого из руды, в которой содержится минимальное количество металла. Таким образом производится добыча меди, золота, титана, графита, песка для производства стекла и известняка для изготовления цемента.
  2. Разделение пульпы на несколько компонентов, которые затем используются для производства. Таким образом сортируют руду и выделяют из нее несколько разных видов полезных ископаемых.

Помимо перечисленных задач, флотационные устройства могут применяться для выделения солей из перенасыщенного раствора, для очистки каучука естественного происхождения от посторонних примесей, а также очистки бытовых и промышленных канализационных стоков.

Разновидности оборудования

Для обогащения руд методом флотации используются такие типы и виды оборудования:

  • Механические установки – перемешивание пульпы, а также диспергирование воздуха производится с помощью импеллера. Он создает водяной вихрь, который распределяет засасываемый воздух на пузырьки.
  • Пневматическое оборудование – насыщение воды воздухом производится с помощью аэраторов. Для разделения на пузырьки воздушный поток пропускается сквозь поры.
  • Комбинированное – В этом случае воздух распределяется на пузырьки с помощью сит, а перемешивание обрабатываемого материала и распределение пузырьков по емкости осуществляется с помощью импеллера.

При покупке оборудования необходимо обращать внимание на объем камеры, пропускную способность установки, мощность привода импеллера, удельный расход воздуха и другие характеристики. 

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 августа 2019;
проверки требуют 4 правки.

Промышленная пенная флотация медных сульфидных руд

Флота́ция (фр.  flottation, от flotter — плавать) — один из методов обогащения полезных ископаемых, который основан на различии способностей минералов удерживаться на межфазовой поверхности, обусловленный различием в удельных поверхностных энергиях. Гидрофобные (плохо смачиваемые водой) частицы минералов избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При флотации пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности.

Флотация применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и др. отраслях промышленности.

История[править | править код]

В развитии теории флотации сыграли важную роль работы русских физикохимиков — И. С. Громеки, впервые сформулировавшего в конце XIX века основные положения процесса смачивания, и Л. Г. Гурвича, разработавшего в начале XX века положения о гидрофобности и гидрофильности. Существенное влияние на развитие современной теории флотации оказали труды А. Годена, А. Таггарта (США), И. Уорка (Австралия), советских учёных П. А. Ребиндера, А. Н. Фрумкина, И. Н. Плаксина, Б. В. Дерягина, В. Р. Кривошеина и других.

Методы флотации[править | править код]

В зависимости от характера и способа образования межфазных границ (вода — масло — газ), на которых происходит закрепление разделяемых компонентов (см. Поверхностно-активные вещества) различают несколько видов флотации.

  • Масляная флотация была предложена первой, на неё В. Хайнсу (Великобритания) в 1860 году был выдан патент № 488[1]. При перемешивании измельченной руды с маслом и водой сульфидные минералы избирательно смачиваются маслом и всплывают вместе с ним на поверхность воды, а порода (кварц, полевые шпаты) осаждается. В Российской империи масляная флотация графита была осуществлена в 1904 году в Мариуполе.
  • Пленочная. Способность гидрофобных минеральных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована А. Нибелиусом (США, 1892) и Маквистеном (Великобритания, 1904) для создания аппаратов плёночной флотации, в процессе которой из тонкого слоя измельченной руды, находящегося на поверхности потока воды, выпадают гидрофильные частицы.
  • Пенная — при которой через смесь частиц с водой пропускают мелкие пузырьки воздуха, частицы определённых минералов собираются на поверхности раздела фаз «воздух-жидкость», прилипают к пузырькам воздуха и выносятся с ними на поверхность в составе трехфазной пены (с добавлением пенообразователя, который регулирует устойчивость пены). Пену в дальнейшем сгущают и фильтруют. В качестве жидкости чаще всего используется вода, реже насыщенные растворы солей (разделение солей, входящих в состав калийных руд) или расплавы (обогащение серы).

Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) — вакуумная флотация, энергичное перемешивание пульпы, пропускание воздуха сквозь мелкие отверстия.

Для проведения пенной флотации производят измельчение руды до крупности 0,5—1,0 мм в случае природногидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера, уголь, тальк) и до 0,1—0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу, а также при возникновении на частицах пузырьков газов, выделяющихся из раствора. На флотацию влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура, плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему флотации, реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего флотацией разделяются зёрна размером 0,1—0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мкм ухудшают флотацию более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1—3 мм) частицы при флотации отрываются от пузырьков и не флотируются. Поэтому для флотации крупных частиц (0,5—5 мм) в СССР были разработаны способы пенной сепарации, при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости.

Читайте также:  Полезен ли тренажерный зал для женщин

Пенная флотация — гораздо более производительный процесс, чем масляная и плёночная флотации. Этот метод применяется наиболее широко[источник не указан 451 день].

  • Электрофлотация — перспективный метод для применения в химической промышленности, заключается во всплытии на поверхности жидкости дисперсных загрязнений за счет выделения электролитических газов и флотационного эффекта.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 1950-х годах был разработан метод ионной флотации, перспективный для переработки промышленных стоков, минерализованных подземных термальных и шахтных вод, а также морской воды. При ионной флотации отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимодействуют с флотационными реагентами-собирателями, чаще всего катионного типа, и извлекаются пузырьками в пену или плёнку на поверхности раствора. Тонкодисперсные пузырьки для флотации из растворов получают также при электролитическом разложении воды с образованием газообразных кислорода и водорода (электрофлотация). При электрофлотации расход реагентов существенно меньше, а в некоторых случаях они не требуются.

Широкое использование флотации для обогащения полезных ископаемых привело к созданию различных конструкций флотационных машин с камерами большого размера (до 10—30 м³), обладающих высокой производительностью. Флотационная машина состоит из ряда последовательно расположенных камер с приёмными и разгрузочными устройствами для пульпы. Каждая камера снабжена аэрирующим устройством и пеносъёмником.

Области применения[править | править код]

  • Обогащение полезных ископаемых (руд цветных металлов, редких и рассеянных элементов, угля, самородной серы);
  • Разделение минералов комплексных руд;
  • Разделение солей;
  • Очистка сточных вод, в частности для выделения капель масел и нефтепродуктов.
  • Дрожжевое производство (способ концентрирования)

В мире благодаря флотации вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Фабрики выпускают до пяти видов концентратов. В ряде случаев хвосты флотации не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в др. целях. Флотация является ведущим процессом при обогащении руд цветных металлов. Внедряется использование оборотной воды, что снижает загрязнение водоёмов.

Флотореагенты[править | править код]

Существует несколько типов флотореагентов, отличающихся принципом действия:

  • Собиратели — реагенты, избирательно сорбирующиеся на поверхности минерала, который необходимо перевести в пену, и придающие частицам гидрофобные свойства. В качестве собирателей используют вещества, молекулы которых имеют дифильное строение: гидрофильная полярная группа, которая закрепляется на поверхности частиц, и гидрофобный углеводородный радикал. Чаще всего собиратели являются ионными соединениями; в зависимости от того, какой ион является активным различают собиратели анионного и катионного типов. Реже применяются собиратели, являющиеся неполярными соединениями, не способными к диссоциации. Типичными собирателями являются: ксантогенаты и дитиофосфаты — для сульфидных минералов, натриевые мыла́ и амины — для несульфидных минералов, керосин — для обогащения угля. Расход собирателей составляет сотни граммов на тонну руды;
  • Регуляторы — реагенты, в результате избирательной сорбции которых на поверхности минерала, последний становится гидрофильным и не способным к флотации. В качестве регуляторов применяют соли неорганических кислот и некоторые полимеры;
  • Пенообразователи — предназначены для улучшения диспергирования воздуха и придания устойчивости минерализованным пенам. Пенообразователями служат слабые поверхностно-активные вещества. Расход пенообразователей составляет десятки граммов на тонну руды.
  • Реагенты-активаторы — это реагенты, создающие условия, благоприятствующие закреплению собирателей на поверхности минералов.
  • Реагенты-депрессоры — это реагенты, применяемые для предотвращения гидрофобизации минералов собирателями. Они предназначены для повышения избирательности (селективности) флотации при разделении минералов, обладающих близкими флотационными свойствами.

См. также[править | править код]

  • Флотационная машина

Примечания[править | править код]

Литература[править | править код]

  • Мещеряков Н. Ф. Флотационные машины. — М.: Недра, 1972. — 248 с.
  • Глембоцкий В. А., Классен В. И. Флотация. — М.: Недра, 1973. — 384 с. — 7300 экз.
  • Справочник по обогащению руд. В 3-х томах / О. С. Богданов (гл. ред.) и др. — М.: Недра, 1972—1974.
  • Барский Л. А. Так ископаемые становятся полезными. — М.: Недра, 1988. — 152 с. — 19 000 экз. — ISBN 5-247-00326-8.

Ссылки[править | править код]

  • [www.mining-enc.ru/f/flotaciya/ Флотация] на сайте «Горной энциклопедии»
  • Сульфидная флотация в добыче золота
  • на сайте ХиМиК.ру (недоступная ссылка) (рус.)

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных ссылок

  • www.mining-enc.ru/f/flotaciya/
  • www.xumuk.ru/encyklopedia/2/4789.html%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F

Источник

Обогаще́ние поле́зных ископа́емых — совокупность процессов первичной обработки минерального сырья, имеющая своей целью отделение всех ценных минералов от пустой породы, а также взаимное разделение ценных минералов.

Общая информация[править | править код]

При обогащении возможно получение как конечных товарных продуктов (асбест, графит и др.), так и концентратов, пригодных для дальнейшей химической или металлургической переработки. Обогащение — наиважнейшее промежуточное звено между добычей полезных ископаемых и использованием извлекаемых веществ. В основе теории обогащения лежит анализ свойств минералов и их взаимодействия в процессах разделения — минералургия.

Обогащение позволяет существенно увеличить концентрацию ценных компонентов. Содержание важных цветных металлов — меди, свинца, цинка — в рудах составляет 0,3—2 %, а в их концентратах — 20—70 %. Концентрация молибдена увеличивается от 0,1—0,05 % до 47—50 %, вольфрама — от 0,1—0,2 % до 45—65 %, зольность угля снижается от 25—35 % до 2—15 %. В задачу обогащения входит также удаление вредных примесей минералов (мышьяк, сера, кремний и т. д.). Извлечение ценных компонентов в концентрат в процессах обогащения составляет от 60 до 95 %.

Операции обработки, которым подвергают на обогатительной фабрике горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное, магнитное, электрическое, флотационное, бактериальное и др. способы обогащения.

Технологический эффект обогащения[править | править код]

Предварительное обогащение полезных ископаемых позволяет:

  • увеличить промышленные запасы минерального сырья за счёт использования месторождений бедных полезных ископаемых с низким содержанием полезных компонентов;
  • повысить продуктивность труда на горных предприятиях и снизить стоимость добываемой руды за счёт механизации горных работ и сплошной выемки полезного ископаемого вместо выборочной;
  • повысить технико-экономические показатели металлургических и химических предприятий при переработке обогащённого сырья за счёт снижения затрат топлива, электроэнергии, флюсов, химических реактивов, улучшения качества готовых продуктов и снижения потерь полезных компонентов с отходами;
  • осуществить комплексное использование полезных ископаемых, потому что предварительное обогащение позволяет извлечь из них не только основные полезные компоненты, но и сопутствующие, которые содержатся в малых количествах;
  • снизить затраты на транспортировку к потребителям продукции горного производства за счёт транспортирования более богатых продуктов, а не всего объёма добытой горной массы, содержащей полезное ископаемое;
  • выделить из минерального сырья вредные примеси, которые при дальнейшей их переработке могут ухудшать качество конечной продукции, загрязнять окружающую среду и угрожать здоровью людей.
Читайте также:  Чем полезна баня когда бросаешь курить

Переработка полезных ископаемых осуществляется на обогатительных фабриках, представляющих собой сегодня мощные высокомеханизированные предприятия со сложными технологическими процессами.

Классификация процессов обогащения[править | править код]

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Подготовительные процессы[править | править код]

Подготовительные процессы предназначены для раскрытия или открытия зёрен полезных компонентов (минералов), входящих в состав полезного ископаемого, и деления его на классы крупности, удовлетворяющие технологическим требованиям последующих процессов обогащения. К подготовительным относят процессы дробления, измельчения, грохочения и классификации.

Дробление и измельчение[править | править код]

Дробление и измельчение — процесс разрушения и уменьшения размеров кусков минерального сырья (полезного ископаемого) под действием внешних механических, тепловых, электрических сил, направленных на преодоления внутренних сил сцепления, связывающих между собой частички твёрдого тела.

По физике процесса между дроблением и измельчением нет принципиальной разницы. Условно принято считать, что при дроблении получают частицы крупнее 5 мм, а при измельчении — мельче 5 мм. Размер наиболее крупных зёрен, до которого необходимо раздробить или измельчить полезное ископаемое при его подготовке к обогащению, зависит от размера включений основных компонентов, входящих в состав полезного ископаемого, и от технических возможностей оборудования, на котором предполагается проводить следующую операцию переработки раздробленного (измельчённого) продукта.

Раскрытие зёрен полезных компонентов — дробления или (и) измельчения сростков до полного освобождения зёрен полезного компонента и получения механической смеси зёрен полезного компонента и пустой породы (микста). Открытие зёрен полезных компонентов — дробление или (и) измельчения сростков до высвобождения части поверхности полезного компонента, что обеспечивает доступ к нему реагента.

Дробление проводят на специальных дробильных установках. Дроблением называется процесс разрушения твердых тел с уменьшением размеров кусков до заданной крупности, путём действия внешних сил, преодолевающих внутренное силы сцепления, связывающие между собой частицы твердого вещества. Измельчение дроблёного материала осуществляют в специальных мельницах (как правило, шаровых или стержневых).

Грохочение и классификация[править | править код]

Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты разной крупности — классы крупности. Грохочение осуществляется рассеванием полезного ископаемого на решето и ситах с калиброванными отверстиями на мелкий (подрешётный) продукт и крупный (надрешётный). Грохочение применяется для разделения полезных ископаемых по крупности на просевных (просеивающих) поверхностях, с размерами отверстий от миллиметра до нескольких сотен миллиметров.

Грохочение осуществляется специальными машинами — грохотами.

Классификация материала по крупности производится в водной или воздушной среде и базируется на использовании различий в скоростях оседания частичек разной крупности. Большие частички оседают быстрее и концентрируются в нижней части классификатора, мелкие частички оседают медленнее и выносятся из аппарата водным или воздушным потоком. Полученные при классификации крупные продукты называются песками, а мелкие — сливом (при гидравлической классификации) или тонким продуктом (при пневмоклассификации). Классификация используется для разделения мелких и тонких продуктов по зерну размером не более 1 мм.

Основные (обогатительные) процессы[править | править код]

Основные процессы обогащения предназначены для выделения из исходного минерального сырья одного или нескольких полезных компонентов. Исходный материал в процессе обогащения разделяется на соответствующие продукты — концентрат(ы), пром.продукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Различия в плотности минеральных зёрен используются при обогащении полезных ископаемых гравитационным методом. Его широко применяют при обогащении угля, руд и нерудного сырья.

Магнитное обогащение полезных ископаемых основывается на неодинаковом воздействии магнитного поля на минеральные частички с разной магнитной восприимчивостью и на действии коэрицитивной силы. Магнитным способом, используя магнитные сепараторы, обогащают железные, марганцевые, титановые, вольфрамовые и другие руды. Кроме того, этим способом выделяют железистые примеси из графитовых, тальковых и других полезных ископаемых, применяют для регенерации магнетитовых суспензий.

Различия в смачиваемости компонентов водой используется при обогащении полезных ископаемых флотационным способом. Особенностью флотационного способа является возможность штучного регулирования смоченности и разделения очень тонких минеральных зёрен. Благодаря этим особенностям флотационный способ является одним из наиболее универсальных, он используется для обогащения разнообразных тонковкрапленных полезных ископаемых.

Различия в смачиваемости компонентов используется также в ряде специальных процессов обогащения гидрофобных полезных ископаемых — в масляной агломерации, масляной грануляции, полимерной (латексной) и масляной флокуляции.

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды, могут обогащаться способом электрической сепарации. К таким полезным ископаемым относятся апатитовые, вольфрамовые, оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяют отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации. Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Читайте также:  С чем можно кушать сырую тыкву и чем она полезна

Отличия в адгезионных и сорбционных свойствах минералов полезного компонента и пустой породы лежит в основе адгезионного и сорбционного способов обогащения золота и адгезионного обогащения алмазов (способы принадлежат к специальным способам обогащения).

Разные свойства компонентов полезного ископаемого взаимодействовать с химическими реагентами, бактериями и (или) их метаболитами обуславливает принцип действия химического и бактериального выщелачивания ряда полезных ископаемых (золото, медь, никель).

Разная растворимость минералов лежит в основе современных комплексных (совмещённых) процессов типа «добыча-обогащение» (скважинное растворение солей с дальнейшим выпариванием раствора).

Использование того или иного метода обогащения зависит от минерального состава полезных ископаемых, физических и химических свойств разделяемых компонентов.

Заключительные операции[править | править код]

Заключительные операции в схемах переработки полезных ископаемых предназначены, как правило, для снижения влажности до кондиционного уровня, а также для регенерации оборотных вод обогатительной фабрики.

Основные заключительные операции — сгущение пульпы, обезвоживание и сушка продуктов обогащения. Выбор метода обезвоживания зависит от характеристик материала, который обезвоживается, (начальной влажности, гранулометрического и минералогического составов) и требований к конечной влажности. Часто необходимой конечной влажности трудно достичь за одну стадию, поэтому на практике для некоторых продуктов обогащения используют операции обезвоживания разными способами в несколько стадий.

Для обезвоживания продуктов обогащения используют способы дренирования (грохоты, элеваторы), центрифугирования (фильтрующие, осадительные и комбинированные центрифуги), сгущения (сгустители, гидроциклоны), фильтрования (вакуум-фильтры, фильтр-прессы) и термической сушки.

Кроме технологических процессов, для нормального функционирования обогатительной фабрики должны быть предусмотрены процессы производственного обслуживания: внутрицеховой транспорт полезного ископаемого и продуктов его переработки, снабжения фабрики водой, электроэнергией, теплом, технологический контроль качества сырья и продуктов переработки.

Основные методы обогащения полезных ископаемых[править | править код]

По виду среды, в которой производят обогащение, различают обогащение:

  • сухое обогащение (в воздухе и аэросуспензии),
  • мокрое (в воде, тяжёлых средах),
  • в гравитационном поле,
  • в поле центробежных сил,
  • в магнитном поле,
  • в электрическом поле.

Гравитационные методы обогащения основываются на различии в плотности, крупности и скорости движения кусков породы в водной или воздушной среде. При разделении в тяжёлых средах преимущественное значение имеет разница в плотности разделяемых компонентов.

Для обогащения наиболее мелких частиц применяют способ флотации, основанный на разнице в поверхностных свойствах компонентов (избирательной смачиваемости водой, прилипании частиц минерального сырья к пузырькам воздуха).

Продукты обогащения полезных ископаемых[править | править код]

В результате обогащения полезное ископаемое разделяется на несколько продуктов: концентрат (один или несколько) и отходы. Кроме того, в процессе обогащения могут быть получены промежуточные продукты.

Концентраты[править | править код]

Концентраты — продукты обогащения, в которых сосредоточено основное количество ценного компонента. Концентраты в сравнении с обогащаемым материалом характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей. В дальнейшем концентраты направляются на дальнейшую переработку. Концентраты обогащения руд чёрных и цветных металлов могут подвергаться окускованию или сразу направляться напрямую на пирометаллургический передел[1].

Отходы[править | править код]

Отходы — конечные продукты обогащения с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически и/или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты, но не термину хвосты, которым, в отличие от отходов, называют обеднённый продукт любой отдельно взятой обогатительной операции).

Промежуточные продукты[править | править код]

Промежуточные продукты (промпродукты) — это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения[править | править код]

Качество полезных ископаемых и продуктов обогащения определяется содержанием и извлечением ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное[править | править код]

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых[править | править код]

Частичное обогащение — это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения зольности неклассифицированного энергетического угля путём выделения и обогащения крупного класса с дальнейшим смешиванием полученного концентрата и мелкого необогащённого отсева.

Потери полезных ископаемых при обогащении[править | править код]

Под потерями полезного ископаемого при обогащении понимается количество пригодного для обогащения полезного компонента, которое теряется с отходами обогащения вследствие несовершенства процесса или нарушения технологического режима.

Установлены допустимые нормы взаимозасорения продуктов обогащения для разных технологических процессов, в частности, для обогащения угля. Допустимый процент потерь полезного ископаемого сбрасывается с баланса продуктов обогащения для покрытия расхождений при учёте массы влаги, выноса полезных ископаемых с дымовыми газами сушилен, механических потерь.

Граница обогащения полезных ископаемых[править | править код]

Граница обогащения полезных ископаемых — это наименьший и наибольший размеры частичек руды, угля, эффективно обогащаемых в обогатительной машине.

Глубина обогащения[править | править код]

Глубина обогащения — это нижняя граница крупности материала, который подлежит обогащению.

При обогащении угля применяются технологические схемы с границами обогащения 13; 6; 1; 0,5 и 0 мм. Соответственно выделяется необогащённый отсев крупностью 0—13 или 0—6 мм, или шлам крупностью 0—1 или 0—0,5 мм. Граница обогащения 0 мм означает, что все классы крупности подлежат обогащению.

Международные конгрессы[править | править код]

Почтовая марка СССР 1968 года, посвященная VIII Международному конгрессу по обогащению полезных ископаемых, проводившемуся в тот год в Ленинграде

С 1952 года проводятся Международные конгрессы по обогащению полезных ископаемых. Ниже приведён их список[2].

См. также[править | править код]

  • Обогащение руд
  • Магнитное обогащение полезных ископаемых
  • Магнитная сепарация
  • Гравитационное обогащение полезных ископаемых
  • Электрическая сепарация
  • Электрическое обогащение
  • Электроклассификация
  • Винтовой сепаратор
  • Эффективность обогащения
  • Люминесцентная сепарация
  • Микробиологическое обогащение угля
  • Металлургический концентрат
  • Горно-обогатительный комбинат
  • Окускование

Примечания[править | править код]

Литература[править | править код]

  1. Обогащение полезных ископаемых (статья) // Горная энциклопедия. Тома 1—5, М.: Советская энциклопедия, 1984—1991
  2. Разумов К. А. Проектирование обогатительных фабрик / 3 изд., М., 1970
  3. Эйгелес М. А. Обогащение неметаллических полезных ископаемых / М., 1952
  4. Малая горная энциклопедия. В 3 т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого. — Донецк: Донбасс, 2004. — ISBN 966-7804-14-3.
  5. Полькин С. И. Обогащение руд / М., 1953
  6. Полькин С. И. Обогащение руд и россыпей редких металлов / М., 1967
  7. Шинкоренко С. Ф. Справочник по обогащению руд черных металлов. — Москва: Недра, 1980. — 527 с.

Ссылки[править | править код]

  • Обогащение руд (специализированный журнал по вопросам обогащения полезных ископаемых) / сайт ИД «Руда и Металлы»

Источник