С увеличением угла коэффициент полезного действия

С увеличением угла коэффициент полезного действия thumbnail

Автор Даниил Леонидович На чтение 7 мин. Просмотров 17.4k. Опубликовано 18 ноября

Что такое КПД

Коэффициент полезного действия машины или механизма – это важная величина, характеризующая энергоэффективность данного устройства. Понятие используется и в повседневной жизни. Например, когда человек говорит, что КПД его усилий низкий, это значит, что сил затрачено много, а результата почти нет. Величина измеряет отношение полезной работы ко всей совершенной работе.

Согласно формуле, чтобы найти величину, нужно полезную работу разделить на всю совершенную работу. Или полезную энергию разделить на всю израсходованную энергию. Этот коэффициент всегда меньше единицы. Работа и энергия измеряется в Джоулях. Поделив Джоули на Джоули, получаем безразмерную величину. КПД иногда называют энергоэффективностью устройства.

формула КПД

Если попытаться объяснить простым языком, то представим, что мы кипятим чайник на плите. При сгорании газа образуется определенное количество теплоты. Часть этой теплоты нагревает саму горелку, плиту и окружающее пространство. Остальная часть идет на нагревание чайника и воды в нем. Чтобы рассчитать энергоэффективность данной плитки, нужно будет разделить количество тепла, требуемое для нагрева воды до температуры кипения на количество тепла, выделившееся при горении газа.

Данная величина всегда ниже единицы. Например, для любой атомной электростанции она не превышает 35%. Причиной является то, что электростанция представляет собой паровую машину, где нагретый за счет ядерной реакции пар вращает турбину. Большая часть энергии идет на нагрев окружающего пространства. Тот факт, что η не может быть равен 100%, следует из второго начала термодинамики.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу. Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

формула

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Единицы измерения

Коэффициент полезного действия – величина безразмерная, то есть не нужно ставить какую-либо единицу измерения. Но эту величину можно выразить и в процентах. Для этого полученное в результате деления по формуле число необходимо умножить на 100%. В школьном курсе математики рассказывали, что процент – этот одна сотая чего-либо. Умножая на 100 процентов, мы показываем, сколько в числе сотых.

От чего зависит величина КПД

Эта величина зависит от того, насколько общая совершенная работа может переходить в полезную. Прежде всего, это зависит от самого устройства механизма или машины. Инженеры всего мира бьются над тем, чтобы повышать КПД машин. Например, для электромобилей коэффициент очень высок – больше 90%.

максимальное значение

А вот двигатель внутреннего сгорания, в силу своего устройства, не может иметь η, близкий к 100 процентам. Ведь энергия топлива не действует непосредственно на вращающиеся колеса. Энергия рассеивается на каждом передаточном звене. Слишком много передаточных звеньев, и часть выхлопных газов все равно выходит в выхлопную трубу.

Как обозначается

В русских учебниках обозначается двояко. Либо так и пишется – КПД, либо обозначается греческой буквой η. Эти обозначения равнозначны.

Символ, обозначающий КПД

Символом является греческая буква эта η. Но чаще все же используют выражение КПД.

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

определение

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

Читайте также:  Полезные утилиты для windows 7 скачать

Формула работы в физике

Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.

коэффициент полезного дейтсвия

Это интересно

Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.

формула

Для сравнения, коэффициенты полезного действия различных устройств:

  • гидроэлектростанций 93-95%;
  • АЭС – не более 35%;
  • тепловых электростанций – 25-40%;
  • бензинового двигателя – около 20%;
  • дизельного двигателя – около 40%;
  • электрочайника – более 95%;
  • электромобиля – 88-95%.

Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.

Источник

Запрос «КПД» перенаправляется сюда; см. также другие значения.

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»)[1]. КПД является безразмерной величиной и часто измеряется в процентах.

Определение[править | править код]

Математически КПД определяется как

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, эту формулу иногда записывают в виде

.

Здесь умножение на не несёт содержательного смысла, поскольку . В связи с этим второй вариант записи формулы менее предпочтителен (одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует).

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

,

где  — количество теплоты, полученное от нагревателя,  — количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

.

Другие похожие показатели[править | править код]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов[править | править код]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины[править | править код]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент[en]

,

где  — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность);  — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

,

где  — тепло конденсации, передаваемое теплоносителю;  — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине , отсюда для идеальной машины

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

,

где ,  — температуры горячего и холодного концов, K[2]. Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Литература[править | править код]

  • Пёрышкин А. В. Физика. 8 класс. — Дрофа, 2005. — 191 с. — 50 000 экз. — ISBN 5-7107-9459-7..

Примечания[править | править код]

Источник

Разность энтальпий начала процесса течения i0 и в точке c1 при выходе iс1 определяет использованный на окружности турбин­ного колеса теплоперепад, который называется окружным в сту­пени:

hu= iiC1.

Из процесса расширения на S—і-диаграмме (см. рис. 74) ок­ружной теплоперепад

Отношение окружного теплоперепада hи к располагаемому hа называется окружным коэффициентом полезного действия

Окружной к.п.д. ступени можно рассматривать как отношение работы пара на окружности ступени к располагаемой работе:

В активной ступени располагаемая работа определяется за­пасом кинетической энергии на выходе из сопла в результате адиабатного расширения L0 = c1t2 / 2 . Подставив значения L0 и Lu из формулы (28)в формулу (32), получают

Подставим в формулу (33) из треугольников скоростей (см. рис. 72) значения: c1u = u + w1cos ?1 и с2u = w2cos?2 — u.

Тогда

Из выражения (34) следует, что окружной к. п. д. ступени зависит от следующих величин:

—   коэффициента скорости ? в сопле, на который влияют ка­чество изготовления сопел и их содержание в хорошем состоянии;

—  коэффициента скорости ?, который определяется углом по­ворота струи и трением;

—  угла наклона сопла ?1; чем хменьше угол ?1, тем выше к. п. д., но это действительно только до определенных пределов, так как с уменьшением ?1 уменьшается угол ?1 и, следовательно, увеличивается угол поворота струи, что вызывает уменьшение скоростного коэффициента ? (наивыгоднейшие значения ?1 = = 10?16° С);

Читайте также:  Крупные бассейны полезных ископаемых в мире

—    углов ?1 и ?2; при уменьшении ?2 по сравнению с углом ?1 к. п. д. увеличивается, однако уменьшение ?2 увеличивает угол поворота струи пара, что приводит к уменьшению коэффициента ? и к. п. д. (наивыгоднейшими значениями являются ?2=?i— (3?15°) — для ступеней ТВД и ?2 = ?1—(7?25°)—для ступе­ней ТНД). Лопатки современных активных турбин практически выполняются несимметричного профиля, т. е. с некоторой сте­пенью реакции, повышающей к. п. д. ступени;

—   отношения u / c1, которое является основной характеристикой ступени. При двух значениях u / c1 = 0 и u / c1 = cos ?1 окружной к. п. д. равен нулю. Между этими значениями ?u имеет и максимум.

Для того, чтобы найти значение u / c1, при котором будет достигнут наибольший ?и, необходимо приравнять нулю первую производную выражения. Принимая все величины постоян­ными, кроме u / c1, получают

Из последнего выражения следует, что при ?1 = 0 наивыгоднейшее отношение для активной ступени составляет u / c1 = 1/2. В реактивной ступени располагаемая работа в ступени эквива­лентна сумме адиабатных теплоперепадов hан и hар, т. е.

L = (hан + hap) 103,

а работа на окружности колеса

Lu=u(2с1cos?1 и).

Подставив значения L0 и Lu в выражения (32а) и произведя такие же преобразования, как и для активной ступени, получают окончательное выражение максимального окружного к. п. д. для идеальной реактивной ступени (? = ? = 1)

Сравнивая его с выражением ?u mах = cos2?1, можно сделать вы­вод: так как при ?1>0 знаменатель 0,5 + 0,5cos2? < 1, то максимальный к. п. д. реактивной ступени больше, чем в активной.

Окружной к. п. д. изолированной ступени, работающей с про­извольной степенью реакции ?, зависит главным образом от отношения u / c1t и степени реакции ?.

На рис. 76 приведены графики зависимости ?u от разных зна­чений: высоты лопатки lл (рис. 76, а), степени реакции ? и угла ?1 (рис. 76, б и в).

Сравнивая приведенные формулы и графики, можно сделать выводы:

1. Для всех ступеней основной характеристикой является от­ношение u / c1, определяющее окружной к. п. д. ступени. При уменьшении u / c1 к. п. д. ступени падает, особенно это резко выражено у чисто активной ступени; поэтому в современных турбинах при­меняют активные ступени с реакцией.

2. С увеличением высоты лопаток ?u возрастает.

3. Уменьшение угла ?1 повышает окружной к. п. д.

4. Наибольшего значения окружной к. п. д. достигает у реак­тивной ступени при u / c1=0,8?1,0. Однако для уменьшения количества ступеней в судовых турбинах обычно принимают значения u / c1 несколько меньшими, при которых к. п. д. снижается незна­чительно, так как кривые изменения ?u от отношения u / c1 вблизи максимума имеют пологий характер.

5. Наивыгоднейшее отношение u / c1 = cos ?1 в реактивной ступени в два раза больше, чем у активном u / c1 = cos ?1 / 2, и поэтому при одной и той же допустимой окружной скорости и одних и тех же срабатываемых теплоперепадах число ступеней у реактив­ной турбины должно быть в два раза больше, чем у активной.

Источник

Величину т) называют мгновенным коэффициентом полезного действия кулачкового механизма.
[c.181]

Как следует из равенства (3.108), значение мгновенного коэффициента полезного действия кулачкового механизма уменьшается при увеличении угла давления а.
[c.335]

Указав на положительные стороны книги Шаумяна (своевременность тезиса о борьбе за сокращение потерь времени, способствующей эффективному использованию оборудования и являющейся одной из задач социалистического хозяйства постановка вопроса о необходимости пересмотра теоретических основ управления стойкостью режущего инструмента и скорости резания и пр.), Ученый совет остановился и на ее недостатках. Например, Шаумян не разработал в ней методику технологических нормативов и экономических обоснований целесообразности варианта конструкций автоматических машин с учетом всех условий их эксплуатации. Книга не исчерпывает всех вопросов теории проектирования автоматов. В книге недостаточно полно раскрыта прогрессивная роль электро-и гидроавтоматики и т. д. В то же время Ученый совет МВТУ не согласился с оценкой книги Шаумяна, данной специалистами ЭНИМСа. В частности, совет подчеркнул, что принцип оценки производительности рабочих машин, положенный Шаумяном в основу рассматриваемых в книге вопросов, является в своей основе общепринятым. Что касается материала, посвященного влиянию угла давления на коэффициент полезного действия кулачкового механизма, то, по мнению совета, он является новым и впервые освещается Шаумяном.
[c.59]

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КУЛАЧКОВОГО МЕХАНИЗМА
[c.480]

Из равенства (26.62) следует, что коэффициент полезного действия уменьшается с увеличением угла давления f). Кулачковый механизм может заклиниться, если сила F21 — р2 os д (рис. 26.18) будет F21 Fw. Заклинивание произойдет, если коэффициент
[c.529]

Из равенства (26.66) следует, что при выбранном законе движения 2 — 2 ((р,) и размере е габариты кулачка определяются радиусом Ro окружности минимального радиуса-вектора кулачка. Увеличивая o, мы получаем меньшие углы давления но большие габариты кулачкового механизма. Обратно, если уменьшить Ro, то возрастают углы давления О и уменьшается коэффициент полезного действия механизма. Если в механизме (рис. 26.18) ось движения толкателя проходит через ось вращения кулачка и е = О, то равенство (26.66) имеет вид
[c.531]

Решение задач метрического синтеза кулачкового механизма должно выполняться на основе учета механических показателей или его качественных критериев, ограничивающих условия, и критериев высшей пары — профиля кулачка. К числу первых относятся угол давления у коэффициент полезного действия механизма т] коэффициент возрастания усилия Н коэффициент динамичности коэффициент прочности или жесткости элементов механизма а коэффициент потерь от трения в кинематических парах х степень удаления механизма от зоны заклинивания Q габарит или компактность механизма Г.
[c.113]

Коэффициент полезного действия. При определении мгновенного к. п. д. кулачковых механизмов удобно пользоваться отношением соответствующих мощностей (см. 21). Мощность вредных сопротивлений Мв. с кулачкового механизма
[c.334]

Кулачковые механизмы могут быть центральными и смещенными. Центральным называется такой кулачковый механизм, у которого линия перемещения острия или центра ролика толкателя пересекает ось вращения кулачка О (см. рис. 5.1). Если эта линия перемещения толкателя проходит на некотором расстоянии е от оси вращения кулачка (рис. 5.2, в и д), то механизм называется смещенным. Смещенный кулачковый механизм при одинаковых с центральным механизмом размерах звеньев дает возможность повысить коэффициент полезного действия, а также изменить скорость движения толкателя при его удалении или сближении относительно оси вращения кулачка.
[c.118]

Читайте также:  Для чего полезна корица с чаем

Надежность и долговечность кулачковых механизмов определяется долговечностью элементов высшей пары, т. е. их поверхностной прочностью. Поэтому при проектировании этих механизмов наряду с кинематическими требованиями, предъявляемыми к механизму, необходимо учитывать законы передачи сил с тем, чтобы получить наиболее рациональную конструкцию механизма, работающую с наиболее высоким коэффициентом полезного действия.
[c.137]

Под кулачковым механизмом понимают совокупность трех элементов стойки — базы механизма, ведущего звена — кулачка и ведомого звена— толкателя или коромысла. Кулачок и толкатель, соприкасаясь, образуют высшую кинематическую пару. Кулачок задает движение толкателю по определенному закону. Кулачок большей частью имеет непрерывное вращательное движение. С целью замены трения скольжения между кулачком и толкателем на трение качения толкатель снабжают роликом. При этом коэффициент полезного действия механизма повышается, а при соответствующем подборе материала и размеров кулачка и ролика снижается их износ.
[c.112]

К исходным данным для проектирования кулачковых механизмов относятся также выбор основных размеров их звеньев. Здесь сначала надо отметить желательность получения наименьших габаритов механизма, достаточно высокого его коэффициента полезного действия, установление размеров направляющих для толкателей, определение диаметра ролика или размеров плоской тарелки толкателя и коромысла и т. д. Основные конструктивные размеры звеньев кулачковых механизмов также связаны и с расчетом на прочность этих звеньев, износом профилей элементов высшей кинематической пары, надежности работы механизма и т. д. Как всегда, при конкретном проектировании трудно спроектировать кулачковый механизм, который удовлетворял бы всем требуемым показателям в одинаковой степени. Поэтому в процессе проектирования конструктор обычно просчитывает несколько вариантов схем механизма и выбирает из них оптимальный вариант или стремится, учитывая технологическое задание, удовлетворить в той ала иной степени основным кинематическим,
[c.688]

Основные размеры кулачковых механизмов определяются, ИСХОДЯ из кинематических, динамических и конструктивных условий. Кинематические условия определяются тем, что механизм должен воспроизводить заданный закон движения. Динамические условия весьма многообразны, но основные условия заключаются в том, чтобы механизм имел достаточно высокий коэффициент полезного действия и чтобы не происходило заклинивания механизма. Конструктивные требования определяются из условий достаточной прочности отдельных деталей механизма, сопротивляемости износу соприкасающихся
[c.702]

Из равенства (27.70) следует, что коэффициент полезного действия уменьшается с увеличением угла давления а. Кулачковый механизм может заклиниться, если сила = os а (рис. 719) будет Заклинивание произойдет, если коэффициент полезного действия т] будет равен нулю. В таком случае из равенства (27.70) получим
[c.704]

К исходным данным для проектирования кулачковых механизмов относится также выбор основных размеров их звеньев. Здесь сначала надо отметить желательность получения наименьших габаритов механизма, достаточно высокого его коэффициента полезного действия, установление размеров и направляющих для толкателей, определение диаметра ролика или размеров плоской тарелки толкателя и коромысла и т. д. Основные конструктивные размеры звеньев кулачковых механизмов также связаны и с расчетом на прочность этих звеньев, износом профилей элементов высшей кинематической пары, надежности работы механизма и т. д.
[c.513]

ВО вращательное движение шпинделя с помощью кривошипно-шатунного механизма или кулисных и кулачковых механизмов и пневмораспределителя. Несмотря на достаточно высокий коэффициент полезного действия, поршневые пневматические двигатели имеют ограниченное применение в ручных машинах из-за большой массы и габаритов и используются главным образом для работ, при которых требуются значительная мощность и пусковой крутящий момент при небольшой частоте вращения.
[c.350]

Пусть дан центральный кулачковый механизм (рис. 7.3). Рассмотрим силы, действующие на его звенья — движущая сила, действующая со стороны кулачка на толкатель и нормальная профилю кулачка в точке касания А кулачка и толкателя f — сила полезного сопротивления F i, Рпг — силы, возникающие в кинематической паре толкатель — направляющая f == f + Рщ) — сила трения толкателя в направляющей (/ — коэффициент трения скольжения) F = —тсила инерции толкателя т — масса толкателя
[c.70]

При анализе реальных конструкций и их кинематических схем выявляются либо дополнительные подвижности И/ , либо избыточные структурные связи q относительно основной схемы механизма с заданным числом степеней свободы U/.i. Из дополнительных подвижностей выделяют местные подвижности звена и местные подвижности группы звеньев W,. Местную подвижность имеют [1лавающие оси, втулки и пальцы, кольца некоторых типов подшипников, блоки, шкивы, ролики в кулачковых механизмах и т. п. Особенность местной подвижности звена заключается в том (см. рис. 2.11, а), что реализация ее не вызывает перемешения остальных звеньев механизма. Местная подвижность звена имеет определенное функциональное назначение, ибо она позволяет, например, уменьшать износ элементов кинематической пары, улучшить условия смазки, повысить коэффициент полезного действия (к.п.д.), надежность, долговечность узлов машин. Общее число местных подвижностей звеньев в кинематической цепи следует выявлять на первоначальной стадии структурного анализа и синтеза механизма.
[c.53]

Большое развитие в СССР получили за последние 20 лет методы синтезаг кулачковых механизмов, нашедших широкое применение в двигателях, станках, машинах текстильной и легкой промышленности, в пищевых и сельскохозяйственных машинах и т. д. В основу их были положены методы кинематической геометрии с соответствующей аналитической интерпретацией. Важное место в задачах синтеза кулачковых механизмов занимали вопросы изучения характеристик различных законов движения ведомых звеньев, коэффициента полезного действия механизмов, закон передачи сил и т. д.
[c.28]

В поршневых пневматических двигателях возвратно-поступательное движение рабочих поршней преобразуется во вращательное движение шпинделя с помощью кривошипно-шатунного механизма или кулисных и кулачковых механизмов и золотникового воздухораспре-деления. Несмотря на достаточно высокий коэффициент полезного действия, поршневые пневматические двигатели имеют ограниченное применение в ручных машинах из-за большой массы и габаритов и используются главным образом для работ, где требуются значительная мощность и пусковой крутящий момент при небольшой частоте вращения.
[c.65]

Смотреть страницы где упоминается термин Коэффициент полезного действия кулачкового механизма
:

[c.293]   

Источник