В слое земли мы добываем полезные ископаемые

В слое земли мы добываем полезные ископаемые thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 мая 2020;
проверки требует 1 правка.

Поле́зные ископа́емые — минеральные и органические образования земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере материального производства (например, в качестве сырья
или топлива). Различают твёрдые, жидкие и газообразные полезные ископаемые.

Описание[править | править код]

Полезные ископаемые находятся в земной коре в виде скоплений различного характера (жил, штоков, пластов, гнёзд, россыпей и пр.).

Скопления полезных ископаемых образуют месторождения, а при больших площадях распространения — районы, провинции и бассейны.

Научные основы добычи полезных ископаемых разрабатывают горные инженеры.

Области науки и технологии о добыче полезных ископаемых:

  • Горное дело
  • Горные науки.

Виды полезных ископаемых[править | править код]

По назначению выделяют следующие виды полезных ископаемых:

  • Горючие полезные ископаемые (нефть, природный газ, горючие сланцы, торф, уголь)
  • Руды (руды чёрных, цветных и благородных металлов)
  • Гидроминеральные (подземные минеральные и пресные воды)
  • Нерудные полезные ископаемые — строительные материалы (известняк, песок, глина и др.), строительные камни (гранит) и пр.
  • Камнесамоцветное сырьё (яшма, родонит, агат, оникс, халцедон, чароит, нефрит и др.) и драгоценные камни (алмаз, изумруд, рубин, сапфир).
  • Горнохимическое сырьё (апатит, фосфаты, минеральные соли, барит, бораты и др.)

Последние три группы совместно могут рассматриваться как нерудные (неметаллические) полезные ископаемые[1][2].

Признаки полезных ископаемых[править | править код]

Отдельными примерами поисковых признаков полезных ископаемых, без разделения на прямые и косвенные, являются:

  • Минералы — спутники рудных месторождений (для алмаза — пироп, для рудного золота — кварц и пирит, для платины нижнетагильского типа — хромистый железняк и пр.)
  • Их присутствие в перенесённых обломках, валунах и т. п., попадающихся на склонах, в ложбинах, руслах водотоков и пр.
  • Прямое наличие в горных обнажениях, выработках, керне
  • Повышенное содержание их элементов-индикаторов в минеральных источниках
  • Повышенное содержание их элементов-индикаторов в растительности

При разведке найденного месторождения закладывают шурфы, проходят канавы, разрезы, бурят скважины и др.

См. также[править | править код]

  • Полезные ископаемые России
  • Разубоживание
  • Месторождение

Примечания[править | править код]

  1. ↑ Нерудные полезные ископаемые // Моршин — Никиш. — М. : Советская энциклопедия, 1974. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 17).
  2. Под редакцией Е. А. Козловского. Неметаллические полезные ископаемые // Горная энциклопедия. — М.: Советская энциклопедия (рус.). — 1984—1991. — статья из Горной энциклопедии. — М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984—1991.

Литература[править | править код]

  • Смирнов B. И. Геология полезных ископаемых. — М.: Недра, 4-е изд., 1982. — 668 с.
  • Смирнов В. И. Геологические основы поисков и разведок рудных месторождений. — М.: Изд-во Московского университета, 1954.
  • Милютин А. Г. Геология и разведка месторождений полезных ископаемых: Учебн. пособие для вузов. — М.: Недра, 1989. — 296 с.
  • Игнатов П. А., Старостин В. И. Геология полезных ископаемых. — М.: МГУ, 1997. — 304 с.
  • Романович И. Ф., Кравцов А. И., Филиппов Д. П. Полезные ископаемые. — М.: Недра, 1982. — 384 с.

Источник

Анонимный вопрос  ·  10 июля 2018

8,9 K

Физик и лирик. Высшее образование — физико-математикое. Интересуюсь всем, что…

Полезные ископаемые бывают разные, если сильно не вдаваться в подробности, то их можно разделить на твердые, жидкие и газовые.
Твердые полезные ископаемые добывают открытым способом через карьеры, подземным способом через шахты или комбинированным открыто-подземным способом.
Жидкие и газообразные полезные ископаемые добывают путём бурения скважин, через которые производится их откачка в специальные хранилища.
Можно еще рассмотреть дражный способ добычи полезных ископаемых, когда горное предприятие осуществляет как добычу сырья, так и его обогащение, т. е. с помощью специального оборудования первично происходит отделение ценной породы от сопутствующей пустой.

Полезные ископаемые добываются различными способами, изобилие которых обусловленно наличием технического прогресса в современном мире.
Ископаемые жидкого и газообразного типа, находящиеся в земле, добывают с помощью бурения скважин и плит.
Так полезные ископаемые поступают на поверхность.
Для добычи полезных ископаемых альтернативных видов также используют дополнительн… Читать далее

Как добывают сланцевый газ?

Абсолютно так же, как и так называемый обычный природный газ. Само понятие сланцы является неправильным переводом на русский язык названия низкопроницаемых горных пород аргиллитов и алевролитов. Как правило, такие пласты тонкие. Для повышения дебитов скважин, то есть увеличения суточной добычи, такие породы предпочитают искусственно растрескивать по технологии гидравлического разрыва пластов. Вот и все отличия.

Прочитать ещё 1 ответ

Как появляются камни?

Камень относится к числу горных пород. Горные породы представляют собой природные соединения из одного или нескольких минералов. Они являются основным элементом литосферы и образуются в результате внешней и внутренней геологической активности.

По своему происхождению горные породы подразделяются на три группы:

  1. Магматические

  2. Осадочные

  3. Метаморфические 

Магматические образуются при остывании магмы на глубине или поверхности; осадочные породы образуются в результате разрушения других пород или из остатков жизнедеятельности организмов; метаморфические — в результате преобразования магматических или осадочных пород при воздействии температуры и давления.

Как добывают уголь?

Способы добычи угля зависят от глубины его залегания. Разработка ведется открытым способом в угольных разрезах, если глубина залегания угольного пласта не превышает 100 метров. Нередки и такие случаи, когда выгодно вести разработку угольного месторождения подземным способом. В современном обществе готовый уголь легко раздобыть на https://inertpro.ru/ И почитать про него там можно.

Прочитать ещё 2 ответа

Добывают ли золото на приисках в России? Выгодно ли это?

Правдоруб. Продажи, мотивация, масштабирование без прикрас

Добывают.  Выгодно. Если бы было не выгодно, не добывали бы. Естественно, никакой гарантии остаться в плюсе нет. Всё зависит от точности геолого-разведочных данных, от того на сколько богато месторождение.

Понятное дело, что всё что можно было легко взять — давно взяли. 

Добыча в удалённых местах, сопряжена с необходимостью строить дороги, доставлять технику, людей и провизию. Вообще золотодобыча — дорогое удовольствие.

В общем есть не мало случаев, когда прииски (старательские артели, как их называют в Сибири ) разоряются.

Какие выделяют виды месторождений?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

По использованию ыделяют следующие виды месторождений: рудные — залежи минералов, из которых можно извлекать ценные металлы и их соединения; нерудные — меторождения, из которых добываются неметаллы, например, глина, гравий, песок; горючие — добыча веществ, которые можно использовать в качестве топлива, например уголь и нефть; камнесамоцветные — запасы драгоценных и полудрагоценных камней; гидроминеральные — поверхностные и подземные воды.

Читайте также:  О детях и семье все самое полезное

Источник

Анонимный вопрос  ·  7 декабря 2018

738

Современная леди. Увлекаюсь искусством, фотографией. Имею широкий кругозор и…

Земной шар состоит из трех основных слоев: в его центре расположено ядро, вторым слоем в строении идет мантия и третий внешний слой земного шара называется земной корой.

Какими особенностями строения земной коры объясняется разнообразие полезных ископаемых?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Полезные ископаемые делятся на два типа по залеганию — осадочные и магматические. Месторождения их неравномерны и чаще встречаются в районах, для которых характерны складчатость земной коры, образование осадочных отложений, сейсмическая активность. Складчатость образуется при столкновении литосферных плит, в свою очередь являющееся причиной наслоения друг на друга твердых пород. земная кора опускается, происходит накладывание осадочных ископаемых, затем поднимается и эти осадочные слои сминаются. В результате расхождения плит происходят извержения вулканов, это дает начало месторождениям цветных металлов. Нефть, газ и уголь образуются там, где плиты не двигаются и остаются стабильными на протяжении многих веков.

Как древние люди представляли землю?

В большинстве культур Земля считалась плоским диском, либо плавающем на поверхности бесконечного океана, либо стоящая на каких-то титанах или огромных животных. Задокументированные предположения о сферической форме земли относятся к периоду Древней Греции, где философы выдвинули свое предположение. Однако до полетов в космос, все утверждения о шарообразности были косвенными, основывались на наблюдениях за другими планетами и вторичных астрономических признаках

Почему нельзя определить точные границы географической оболочки?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Географическая оболочка состоит из таких слоев: нижняя часть атмосферы, верхняя часть твердой земной коры, все водное покрытие, т.е. гидросфера. Между ними происходит непрерывнй круговорот веществ и энергии. Однако точных границ между ними нет, поскольку ни земная кора, ни гидросфера, ни атмосфера не имеют одинаковой толщины на всей планете.

Почему Земля круглая?

Главный редактор издания «Популярный университет», химик по образованию, продвигаю массы…  ·  popuni.ru

На самом деле она не совсем круглая, а имеет форму геоида. Это эллипсоид, сплюснутый у полюсов. Но приблизительно можно считать, что она имеет форму шара. Все дело в том, что шар — это форма, которая имеет наибольшую площадь поверхности при наименьшем объеме. Поэтому тела из одного материала, находящиеся в другой среде, принимают эту форму — например, капля воды в воздухе или пузырек масла в воде.

Все это связано с достижением наименьшей энергии тела. Шар — это именно такая форма, внешние силы не могут сжать ее, уменьшив энергию.

Чтобы понять, как наша планеты приняла форму геоида, необходимо обратиться к процессу образования планет из протопланетных дисков. Этот процесс происходит более-менее равновесно в течение нескольких миллионов лет — то есть, вокруг ядра происходит постепенное нарастание слоев твердого вещества во всех направлениях. Ничто не препятствует этому росту, поэтому частицы распределяются равномерно по всей поверхности будущей планеты и в конечном итоге формируют шар, на котором мы живем сейчас.

Прочитать ещё 3 ответа

Источник

Происхождение полезных ископаемых на Земле.

                                                                              Гипотеза.

К существованию на Земле полезных ископаемых мы так привыкли, что и не помышляем задумываться: «Как они появились на Земле?». Считаем, что всё это естественно, как утро после ночи. Земля, конечно, создала полезные ископаемые для того, чтобы появившийся среди животного мира Земли «гомо сапиенс», смог ими воспользоваться для прогресса в своей жизни и деятельности, и создания для себя комфортных условий проживания, оправдывая высказывание, что человек – это венец творения Природы. Но давайте проследим путь – откуда и что появилось.

По современным научным знаниям Земля устроена следующим образом. В её центре находится ядро, состоящее в основном из железа, кремния и никеля. Его радиус около 3,5 тыс. км. Выше ядра расположена мантия толщиною примерно 2900 км., вещество которой состоит преимущественно из кислорода, магния, кремния и небольшого количества железа. В ней также присутствует и ряд других элементов, но все они вместе взятые составляют лишь 10%  от первых четырёх. Всё это укрыто земной корой, средняя толщина которой примерно 35 км. . (Кора тоньше под океанами и толще под горами). На 99% земная кора состоит из восьми элементов, а именно: кислород — 62,5 %, кремний — 21 %, алюминий — 6,5 %  и железо, магний, кальций, натрий и калий – количество каждого из них примерно от1,5%  до 2%.

Как видно, всё имеет своё место, свой химический состав и приспособлено к своему местоположению. Температуры в глубинах Земли сейчас тоже не вызывают опасений. Они стабилизировались. Внутреннее вещество находится в состоянии остывания, которое продолжается примерно миллиард лет. Конечно, пока ещё существуют очаги активной вулканической деятельности, но они имеют локальный, а не глобальный характер. В мантии под корой температура уже ниже температуры расплава вещества. Под материками она 600-7000С, однако, с увеличением глубины температура повышается и в слое Гутенберга она уже 1500-18000С, а в ядре – 4000-50000С.

Так ли это было всегда? Давайте заглянем вглубь истории Земли, которая начинается с газопылевого облака, из которого и сформировалась Солнечная система. Это облако было обширно, то есть имело размеры примерно, такие же, как настоящая Солнечная система. Все чужеродные космические тела, попадая в пределы этого облака, переставали существовать самостоятельно, и становились частью этого облака.

Облако, вращаясь, превращалось в довольно плоский диск с шаром-Солнцем в центре. Частицы облака, притягиваясь друг к другу, создавали уже некие крупные образования, которые увеличиваясь и всё более интенсивно притягивая свободные частицы, со временем превращались в планеты. (Более подробную информацию можно получить в материалах сайта www.borgece.at.ua и блога borgece.livejournal.com )

Первоначально Солнечная система состояла из Солнца и десяти планет. Это были: Меркурий, Венера, Земля, Марс, Церера, Фаэтон, Юпитер, Сатурн, Уран и Нептун. Не было Плутона, спутников планет, астероидов, метеоритов и комет.

Читайте также:  Что такое свити и чем она полезна

Солнце в своём раннем возрасте было несколько больше, имело более высокую температуру поверхности и, следовательно, большую мощность излучения энергии. В нём, как и в других звёздах, стали протекать внутренние процессы, которые приводили к вспышкам, наподобие «новых звёзд». Происходили они примерно раз в    30 тыс. лет и сопровождались выбросом солнечного вещества, которое затем, давлением тепла и света Солнца, выталкивалось прочь, достигая самых удаленных планет. Это вещество состояло из элементов, преимущественно верхней части таблицы Менделеева. Вещество слой за слоем оседало на планеты, увеличивая их массу. Естественно, оно было однородным, хотя слои могли отличаться друг от друга в процентах какого-либо элемента. Да и вещество, из которого Земля состояла в стадии формирования, также было практически одинаковым в любом месте и на любой глубине, так как это было вещество газопылевого облака, которое тоже было ни чем иным, как произвольной смесью различных элементов и их соединений.

При увеличении массы Земли, а с нею и внутреннего давления, в её глубинах начали происходить процессы, видимо на атомном уровне (имеется в виду не химическое соединение элементов, а преобразование атома одного элемента в атом другого с выделением энергии), которые и привели к разогреву всей массы Земли. Температуры, особенно в глубинах, со временем стали столь велики, что расплавленное вещество уже имело возможность перемещаться, занимая место сообразно своему удельному весу – тяжёлое — ближе к центру, а лёгкое — к поверхности.

В науке существует уверенность, что разогрев Земли осуществили радиоактивные элементы, и в первую очередь – уран. Не отрицая полностью эту версию, хотелось бы высказать некоторые сомнения по этому поводу.

Урана, задействованного в разогреве Земли, конечно же, было бы недостаточно, чтобы, разогреть всю массу Земли, а затем поддерживать эту температуру в течение      4 млрд. лет, поэтому мы остаёмся при мнении, что здесь имеют место иные  реакции, с перестройкой атомов одних элементов в атомы других. Эти реакции возможны при высоких давлениях и температурах. Высокая температура не только используется элементом для действия, но и даёт ему возможность самому произвести энергию. Предполагается, что в этой реакции произведённая энергия превышает потреблённую.

Разогрев, начавшийся в центральной части, постепенно стал вовлекать в этот процесс и вышележащие слои, что привело к разогреву всего тела планеты. Конечно, потери тепла внешнего слоя были более значительные, поэтому температура на поверхности была намного ниже, чем в глубинах, тем не менее, на верхнем слое этот процесс отразился более заметно. Нижележащие слои, нагреваясь расплавлялись и, расширяясь перемешивались. Верхний же слой-панцирь, нагреваясь и расширяясь во все стороны, коробился, разламываясь, образуя горы и трещины, в которые устремилось расплавленное вещество земных недр.

Теперь эти же процессы рассмотрим с некоторым применением хронологии.

3500 млн. лет назад Земля – это уже состоявшаяся планета, правда, ещё холодная, однако внутри неё уже начался процесс, который впоследствии приведёт её к разогреву. Этот период в геохронологии называется архей. В позднем архее наука уже фиксирует рудообразование, но мы сосредоточим своё внимание на следующим за археем периоде, который называется протерозой, что означает — более ранняя жизнь, и как увидим, в этот период никакой жизни просто не могло существовать.

Протерозой состоял из трёх периодов. Нижний — начался  2600 млн. лет назад,                           средний – 1900 млн. лет, и верхний — 1600 млн. лет назад. Верхний протерозой длился 1030 млн. лет. Общее время протерозоя, который продолжался примерно 2 млрд. лет, было временем ада на Земле. В многочисленных очагах рудообразования расплавленное вещество недр изливалось, покрывая обширные пространства в десятки и сотни километров. Это вещество текло подобно реке или образовывало озёра расплава, который благодаря высоким температурам поверхности Земли, остывал долговременно, успевая вступать в химические реакции с сероводородом атмосферы и с веществом окружающего его грунта. О температурах расплавленного вещества можно судить по тем металлам, которые находились в расплаве.

Если в рудах были хром или титан, то температура должна была быть не ниже 20000С, а если вольфрам, то даже выше 35000С.

Извержение расплавленного вещества из недр длилось какое-то время, после чего наступал период затишья. Видимо, в глубинах в результате реакций, продолжающихся постоянно, накапливалось производное вещество и при достижении какого-то критического объёма эти реакции переходили уже в иную фазу с большим выделением энергии, что и приводило к выплеску вещества глубин наружу.

В различных месторождениях руд, геология в настоящее время обычно обнаруживает несколько активных фаз рудообразования. Их подсчитывают. Оказывается, таких активных фаз рудообразования насчитывается до десяти и даже более.

 Ещё в рудообразовании представляет интерес то, что  фактически из одного и того же исходного материала получаются различные руды с многочисленными сопутствующими элементами, как металлами, так и неметаллами. Конечно, нельзя даже предполагать, чтобы какие-то элементы под воздействием неизвестных сил, стягивались бы к своему очагу рудообразования: кто к медному, кто к железному, а кто-то ещё к какому-то. Такого просто не могло быть. Однако иногда в очагах рудообразования присутствие металлов оценивается в десятки процентов. Не могли же они просто переместиться в это место.                                         

Можно допустить, что на ассортимент рудного месторождения влияла температура и ещё какие-то сопутствующие условия, определявшие, какой элемент должен быть основным в каком-то конкретном случае, то есть что-то вроде специализации месторождения. Может быть, науке удастся это определить, а пока только констатация фактов.

Рудообразование состояло, по крайней мере, из двух стадий. На первой стадии «выпекался» тот или иной элемент в чистом виде и ряд сопутствующих элементов в меньшем количестве, а во второй стадии уже был возможен целый ряд превращений этого элемента от образования так называемых твёрдых растворов с другими элементами, до химических реакций, как в самом жерле, так и при выходе на поверхность. Раскалённая руда в большинстве случаев не окислялась, так как в атмосфере отсутствовал чистый кислород, зато обязательно вступала в соединения с сероводородом, в изобилии находящемся в атмосфере. Возможно, поэтому преобладающее большинство руд – это соединения с серой.

Читайте также:  Сырые яйца пить полезно для похудения

Я в своей книжке рассказов – «Солнце – это основа всего», многократно указываю на различные действия Природы, которые можно считать запланированными, то есть она как бы выполняет программу жизненного цикла (в данном случае на Земле). И образование руд – это очередное подтверждение этого. Науке известно, что в архее атмосфера Земли состояла на 60% из углекислого газа. Далее следовали сероводород и аммиак. Все остальные газы составляли не более 10%. Если гигантская растительность в каменноугольном периоде 350-285 млн. лет назад освободила воздух от углекислого газа, спрятав углерод,  атмосферы в стволы деревьев, которые сейчас покоятся под солнечными выбросами, став углём, то освобождение атмосферы Земли от сероводорода  произошло в протерозое, и это выполнили рудные месторождения.  

Теперь надо сделать какие-то выводы и переходить к чему-то конкретному. Как и прежде, я буду обращаться к материалам своего сайта и блога. Начну с того, что бесспорно. Это — утверждение, что всё в Солнечной системе получено от Солнца.

Солнце взорвалось как сверхновая звезда, и, распылив всё своё вещество, образовало газопылевое облако, где среди прочих элементов присутствовал гелий и его изотоп – гелий-3. Естественно, образовавшаяся из этого вещества молодая Земля уже имела в своей массе какое-то количество изотопа гелия. Природой, видимо, это было запланировано на все времена,  чтобы с чего-то начинать развитие планет. Зная  это, уже можно более уверенно сказать, что разогрев тела Земли осуществлялся с использованием энергии гелия-3.

Что же такого особенного в этом изотопе гелия? Почему он, а не какой-нибудь другой элемент наделён такой энергией?

В действительности большими энергиями наделены все без исключения атомы, аккумулирующие эту энергию в атомном ядре, но дело в том, что обычно ядро атома очень прочно, и это является препятствием к доступности получения этой энергии. Однако есть несколько элементов, ядра которых не столь устойчивы. Это, во-первых – изотопы водорода – дейтерий и тритий, и изотоп гелия-4 – гелий-3. Почему они неустойчивы?

Тело находится в устойчивом состоянии, только тогда, когда оно имеет три точки опоры. (Смотри вышеуказанный сайт и блог). Это относится ко всему, что нас окружает, в том числе и к частицам ядра атома. Частицы дейтерия, трития и гелия-3 не имеют трёх точек опоры (соприкосновения) друг с другом, Следовательно, они находятся в неустойчивом состоянии. Это дало возможность, при использовании дейтерия и трития, создать водородную бомбу, а гелий-3 сулит решить для землян проблему больших энергий. Освоение гелия-3 – надежда человечества.                                                                            

Но там, где большие энергии, присутствует и большой риск. А вдруг энергии будет слишком много и это обернётся  повторением ада, наподобие того, что был в протерозое?  Ведь диаметр Земли, благодаря солнечным выбросам, увеличился на километры.  К нашей радости этого не будет. Ведь основное количество гелия-3 «выгорело» ещё в протерозое. Но наука обнаружила большие запасы гелия-3 на Луне. Оказалось — его там столько, что можно черпать прямо с поверхности бульдозерами и черпалками. Он находится в осевшем на Луну веществе солнечных выбросов, которое находится там  в первозданном состоянии. На Земле же, гелия-3 чрезвычайно мало. А, казалось бы, должно было быть иначе. Ведь на Землю оседает то же самое  вещество солнечных выбросов  и в десятки раз больше, чем на Луну. В чём же причина?
            Есть разные варианты ответа на этот вопрос.

Первозданную сохранность вещества солнечных выбросов на Луне можно объяснить тем, что на Луне отсутствует атмосфера. В условиях Земли, при наличии атмосферы, гелий-3, возможно, просто был выдавлен более тяжёлыми газами воздуха, и теперь он находится в самых верхних слоях атмосферы. Другое. Возможно, подвергаясь воздействию атмосферы и живой природы Земли,он  реагировал на эти воздействия, расходуя свою потенциальную энергию? Ещё. Возможно, он способствовал преобразованию грунта в почву? А может быть, этот перечень причин этим не ограничивается и этому могло способствовать ещё что-то, чего мы не знаем?  Но мы теперь знаем, какое огромное значение для Земли имел изотоп гелий-3.                                                                                                                                       
            Энергия  гелия-3, поступившего из газопылевого облака  при формировании Земли как планеты, разогрела тело Земли, создав ядро Земли, мантию и преобразовав поверхность Земли, то есть на Земле появились возвышенности, впадины и горы.

Сквозь разломы и трещины  земной коры на поверхность изливались лавовые потоки, имеющие температуры расплавленного вещества в тысячи градусов, в которых происходили реакции разрушения атома и создания атомов практически всех элементов существующих ныне.

Огромное значение для появления жизни на Земле явилось то, что расплавленные руды, вступая в реакции с сероводородом атмосферы Земли, освободили атмосферу Земли от этого агрессивного соединения.

И, конечно же, все рудные месторождения Земли, появились только благодаря энергии гелия-3. Человек с благодарностью пользуется этими рудами и минералами.

Хочется порассуждать. А можно ли сейчас, создав условия протерозоя, то есть высокие температуры и давление, получать исскуственно созданные, нужные нам элементы? Ну, например, мечту алхимиков – золото?

Здесь, видимо, уместно ответить вопросом на вопрос: «А разве не получали древние потомки марсиан (смотри вышеуказанный сайт и блог ) исскуственным путём золото?»  Если бы оно в Египте или в других местах колонизации Земли добывалось так же, как добывают его современные старатели, то разве было бы оно для них по цене, как для нас сейчас медь? Откуда там столько золота? Читаем: «У фараона – золота, как песка», «Конкистадоры потребовали в качестве откупа – засыпать золотом всё помещение до окон».

Можно ли при современных знаниях осуществить мечту алхимиков? Если покумекать, то может что-то и придумаем. Ведь Природа одарила разумного человека полуфабрикатами (алюминий, кремний, магний и др.) и даже показала, как из них можно изготовить множество металлов и минералов. А золото может и само подскажет, как его «выпекать» из кремния или магния.

Ну что ж! Есть направление. Осталось только найти верный путь.

         
               PS
          Это обещанное сенсационное сообщение, которое, как и предыдущие, повидимому так же окажется недоступным для широких народных  масс.  Здесь в ЖЖ, оно находится надёжно спрятанным за семью печатями.
                               BORGECE.

Источник